

Documentation of the PowerSystemDataModel

Welcome to the documentation of the PowerSystemDataModel.
It provides an extensive data model capable of modelling energy systems with high granularity e.g. for bottom-up simulations.
Additionally, useful functions to process, augment and furnish model i/o information is provided.
Effective handling of geographic information related to power grids is also possible.

Contents:

	Getting started
	Requirements

	Where to get

	Available models
	Input

	Result

	Time Series

	Validation Utils

	I/O
	InfluxDB

	csv files

Contact the (Main) Maintainers

If you feel, something this missing, wrong or misleading, please contact one of our main contributors:

	@sensarmad [https://github.com/sensarmad]

	@johanneshiry [https://github.com/johanneshiry]

	@ckittl [https://github.com/ckittl]

Hat tip to all other contributors!

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Welcome, dear fellow of bottom up power system modelling!
This section is meant to give you some help getting hands on our project.
If you feel, something is missing, please contact us!

Requirements

Java > v 1.8

Where to get

Checkout latest from GitHub [https://github.com/ie3-institute/PowerSystemDataModel] or use maven for dependency
management:

Stable releases

On Maven central [https://search.maven.org/artifact/com.github.ie3-institute/PowerSystemDataModel]:

<dependency>
 <groupId>com.github.ie3-institute</groupId>
 <artifactId>PowerSystemDataModel</artifactId>
 <version>1.1.0</version>
</dependency>

Snapshot releases

Available on OSS Sonatype [https://oss.sonatype.org/].
Add the correct repository:

<repositories>
 <repository>http://oss.sonatype.org/content/repositories/snapshots</repository>
</repositories>

and add the dependency:

<dependency>
 <groupId>com.github.ie3-institute</groupId>
 <artifactId>PowerSystemDataModel</artifactId>
 <version>2.0-SNAPSHOT</version>
</dependency>

Available models

This page gives an overview about all available models in PowerSystemDataModel.
They are basically grouped into three groups:

	Input models may be used to describe input data for a power system simulation

	Result models denote results of such a simulation

	Time Series may serve both as input or output

All those models are designed with some assumptions and goals in mind.
To assist you in applying them as intended, we will give you some general remarks:

	Uniqueness

	All models have a uuid field as universal unique identifier.
There shouldn’t be any two elements with the same uuid in your grid data set, better in your whole collection
of data sets.

	Immutability

	We designed the models in a way, that does not allow for adaptions of the represented data after instantiation of the
objects.
Thereby you can be sure, that your models are thread-safe and no unwanted or unobserved changes are made.

	Copyable

	With the general design principle of immutability, entity modifications (e.g. updates of field values) can become
hard and annoying. To avoid generating methods to update each field value, we provide an adapted version of the
builder pattern [https://en.wikipedia.org/wiki/Builder_pattern/] to make entity modifications as easy as possible.
Each entity holds it’s own copy builder class, which follows the same inheritance as the entity class itself. With a
call of .copy() on an entity instance a builder instance is returned, that allows for modification of fields and
can be terminated with .build() which will return an instance of the entity with modified field values as required.
For the moment, this pattern is only implemented for a small amount of AssetInput entities (all entities held by a
GridContainer except thermal units to be precise), but we plan to extend this capability to all input entities in the
future.

	Single Point of Truth

	Throughout all models you can be sure, that no information is given twice, reducing the possibility to have ambiguous
information in your simulation set up.
“Missing” information can be received through the grids relational information - e.g. if you intend to model a wind
energy converter in detail, you may find information of it’s geographical location in the model of it’s common
coupling point (node).

	Harmonized Units System

	As our models are representations of physical elements, we introduced a harmonized system of units.
The standard units, the models are served with, is given on each element’s page.
Thereby you can be sure, that all information are treated the same.
As most (database) sources do not support physical units, make sure, you have your input data transferred to correct
units before.
Same applies for interpreting the obtained results.
In all models physical values are transferred to standard units on instantiation.

	Equality Checks

	To represent quantities in the models within an acceptable accuracy, the JSR 385 reference implementation
Indriya [https://github.com/unitsofmeasurement/indriya] is used. Comparing quantity objects or objects holding quantity
instances is not as trivial as it might seem, because there might be different understandings about the equality of
quantities (e.g. there is a big difference between two instances being equal or equivalent). After long discussions how to
treat quantities in the entity equals() method, we agreed on the following rules to be applied:

	equality check is done by calling Objects.equals(<QuantityInstanceA>, <QuantityInstanceB>) or
<QuantityInstanceA>.equals(<QuantityInstanceB>).
Using Objects.equals(<QuantityInstanceA>, <QuantityInstanceB>) is necessary especially for time series data.
As in contrast to all other places, quantity time series from real world data sometimes are not complete and
hence contain missing values. To represent missing values this is the only place where the usage of null
is a valid choice and hence needs to be treated accordingly. Please remember that his is only allowed in very few
places and you should try to avoid using null for quantities or any other constructor parameter whenever possible!

	equality is given if, and only if, the quantities value object and unit are exactly equal. Value objects can become
e.g. BigDecimal or Double instances. It is important, that the object type is also the same, otherwise
the entities equals() method returns false. This behavior is in sync with the equals implementation
of the indriya library. Hence, you should ensure that your code always pass in the same kind of a quantity instance
with the same underlying number format and type. For this purpose you should especially be aware of the unit conversion
method AbstractQuantity.to(Quantity) which may return seemingly unexpected types, e.g. if called on a quantity
with a double typed value, it may return a quantity with a value of either Double type or BigDecimal type.

	for now, there is no default way to compare entities in a ‘number equality’ way provided. E.g. a line with a length
of 1km compared to a line with a length of 1000m is actually of the same length, but calling LineA.equals(LineB)
would return false as the equality check does NOT convert units. If you want to compare two entity instances
based on their equivalence you have (for now) check for each quantity manually using their isEquivalentTo()
method. If you think you would benefit from a standard method that allows entity equivalence check, please consider
handing in an issue here [https://github.com/ie3-institute/PowerSystemDataModel/issues].
Furthermore, the current existing implementation of isEquivalentTo() in indriya does not allow the provision of
a tolerance threshold that might be necessary when comparing values from floating point operations. We consider
providing such a method in our PowerSystemUtils [https://github.com/ie3-institute/PowerSystemUtils] library.
If you think you would benefit from such a method, please consider handing in an issue
here [https://github.com/ie3-institute/PowerSystemUtils/issues].

Input

Model classes you can use to describe a data set as input to power system simulations.

	Operator

Grid Related Models

	Node

	Schematic Node Graphic

	Line

	Schematic Line Graphic

	Switch

	Two Winding Transformer

	Three Winding Transformer

	Measurement Unit

	Grid Container

Participant Related Models

	General Remarks on Participant Models

	Biomass plant

	Combined Heat and Power Plant

	Electric Vehicle

	Electric Vehicle Charging Station

	Fixed Feed In Facility

	Heat Pump

	Load

	Photovoltaic Power Plant

	Electrical Energy Storage

	Wind Energy Converter

	Thermal Bus

	Thermal House Model

	Cylindrical Thermal Storage

Result

Model classes you can use to describe the outcome of a power system simulation.

Grid Related Models

	Node

	Connector

	Line

	Switch

	Transformer

	Two Winding Transformer

	Three Winding Transformer

Participant Related Models

	Biomass plant

	Combined Heat and Power Plant

	Electric Vehicle

	Electric Vehicle Charging Station

	Fixed Feed In Facility

	Load

	Load

	Photovoltaic Power Plant

	Electrical Energy Storage

	Wind Energy Converter

	Thermal Sink

	Thermal Storage

	Thermal Unit

	Thermal House

	Cylindrical Thermal Storage

	System Participant

Time Series

Time series are meant to represent a timely ordered series of values.
Those can either be electrical or non-electrical depending on what one may need for power system simulations.
Our time series models are divided into two subtypes:

	Individual Time Series

	Each time instance in this time series has its own value (random duplicates may occur obviously).
They are only applicable for the time frame that is defined by the content of the time series.

	Repetitive Time Series

	Those time series do have repetitive values, e.g. each day or at any other period.
Therefore, they can be applied to any time frame, as the mapping from time instant to value is made by information
reduction.
In addition to actual data, a mapping function has to be known.

To be as flexible, as possible, the actual content of the time series is given as children of the Value class.
The following different values are available:

	Value Class

	Purpose

	PValue

	Electrical active power

	SValue

	Electrical active and reactive power

	HeatAndPValue

	
Combination of thermal power (e.g. in kW)

and electrical active power (e.g. in kW)

	HeatAndSValue

	
Combination of thermal power (e.g. in kW)

and electrical active and reactive power (e.g. in kW and kVAr)

	EnergyPriceValue

	Wholesale market price (e.g. in € / MWh)

	SolarIrradianceValue

	Combination of diffuse and direct solar irradiance

	TemperatureValue

	Temperature information

	WindValue

	Combination of wind direction and wind velocity

	WeatherValue

	Combination of irradiance, temperature and wind information

Validation Utils

This page gives an overview about the ValidationUtils in the PowerSystemDataModel.

The methods in ValidationUtils and subclasses can be used to check that objects are valid, meaning their parameters have valid values and they are correctly connected.

	The check methods include checks that assigned values are valid, e.g. lines are not allowed to have negative lengths or the rated power factor of any unit must be between 0 and 1.

	Furthermore, several connections are checked, e.g. that lines only connect nodes of the same voltage level or that the voltage levels indicated for the transformer sides match the voltage levels of the nodes they are connected to.

	The method ValidationUtils.check(Object) is the only method that should be called by the user.

	This check method identifies the object class and forwards it to a specific check method for the given object

	The overall structure of the ValidationUtils methods follows a cascading scheme, orientated along the class tree

	
	Example: A LineInput lineInput should be checked

	
	ValidationUtils.check(lineInput) is called

	ValidationUtils.check(lineInput) identifies the class of the object as AssetInput and calls ValidationUtils.checkAsset(lineInput)

	ValidationUtils.checkAsset(lineInput), if applicable, checks those parameters that all AssetInput have in common (e.g. operation time) and further identifies the object, more specifically, as a ConnectorInput and calls ConnectorValidationUtils.check(lineInput)

	ConnectorValidationUtils.check(lineInput), if applicable, checks those parameters that all ConnectorInput have in common and further identifies the object, more specifically, as a LineInput and calls ConnectorValidationUtils.checkLine(lineInput)

	ConnectorValidationUtils.checkLine(lineInput) checks all specific parameters of a LineInput

	ValidationUtils furthermore contains several utils methods used in the subclasses

The ValidationUtils include validation checks for…

	
	NodeValidationUtils

	
	NodeInput

	VoltageLevel

	
	ConnectorValidationUtils:

	
	
	ConnectorInput

	
	LineInput

	Transformer2WInput

	Transformer3WInput

	SwitchInput

	
	ConnectorTypeInput

	
	LineTypeInput

	Transformer2WTypeInput

	Transformer3WTypeInput

	
	MeasurementUnitValidationUtils

	
	MeasurementUnitInput

	
	SystemParticipantValidationUtils

	
	
	SystemParticipantInput

	
	BmInput

	ChpInput

	EvInput

	FixedFeedInInput

	HpInput

	LoadInput

	PvInput

	StorageInput

	WecInput

	(missing: EvcsInput)

	
	SystemParticipantTypeInput

	
	BmTypeInput

	ChpTypeInput

	EvTypeInput

	HpTypeInput

	StorageTypeInput

	WecTypeInput

	(missing: EvcsTypeInput/ChargingPointType)

	
	ThermalUnitValidationUtils

	
	
	ThermalUnitInput

	
	
	ThermalSinkInput

	
	ThermalHouseInput

	
	ThermalStorageInput

	
	CylindricalStorageInput

	
	GraphicValidationUtils

	
	
	GraphicInput

	
	LineGraphicInput

	NodeGraphicInput

	
	GridContainerValidationUtils

	
	GraphicElements

	GridContainer

	RawGridElements

	SystemParticipants

	Due to many checks with if-conditions, the usage of the ValidationUtils for many objects might be runtime relevant.

	The check for a GridContainer includes the interplay of the contained entities as well as the checks of all contained entities.

	If new classes are introduced to the PowerSystemDataModel, make sure to follow the forwarding structure of the ValidationUtils methods when writing the check methods!

Operator

This is a simple identifier object, representing a natural or legal person that is the owner or responsible person
having control over one or more physical entitites.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

Application example

	1
2
3
4

	OperatorInput profBroccoli = new OperatorInput(
 UUID.fromString("f15105c4-a2de-4ab8-a621-4bc98e372d92"),
 "Univ.-Prof. Dr. rer. hort. Klaus-Dieter Brokkoli"
)

Caveats

Nothing - at least not known.
If you found something, please contact us!

Node

Representation of an electrical node, with no further distinction into bus bar, auxiliary node or others.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	vTarget

	p.u.

	Target voltage magnitude to be used by voltage regulation entities

	slack

	–

	
Boolean indicator, if this nodes serves as a slack node in power

flow calculation

	geoPosition

	–

	Geographical location

	voltLvl

	–

	Information of the voltage level (id and nominal voltage)

	subnet

	–

	Sub grid number

Caveats

System participants, that need to have geographical locations, inherit the position from the node.
If the overall location does not play a big role, you are able to use the default location with
NodeInput#DEFAULT_GEO_POSITION being located on TU Dortmund university’s campus (See on OpenStreetMaps [https://www.openstreetmap.org/search?query=51.4843281%2C%207.4116482#map=15/51.4843/7.4117]).

Schematic Node Graphic

Schematic drawing information for a node model.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	graphicLayer

	–

	
Human readable identifier of the graphic layer to draw

this element on

	path

	–

	Line string of coordinates describing the drawing, e.g. for bus bars

	point

	–

	Alternative to line string, only drawing a point coordinate

	node

	–

	Reference to the physical node model

Caveats

Nothing - at least not known.
If you found something, please contact us!

Line

Representation of an AC line.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	r

	Ω / km

	Phase resistance per length

	x

	Ω / km

	Phase reactance per length

	g

	µS / km

	Phase-to-ground conductance per length

	b

	µS / km

	Phase-to-ground susceptance per length

	iMax

	A

	Maximum permissible current

	vRated

	kV

	Rated voltage

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	nodeA

	–

	

	nodeB

	–

	

	parallelDevices

	–

	Amount of parallel devices of same attributes

	type

	–

	

	length

	km

	

	geoPosition

	–

	
Line string of geographical locations describing the

position of the line

	olmCharacteristic

	–

	
Characteristic of possible overhead line monitoring

Can be given in the form of olm:{<List of Pairs>}.

The pairs are wind velocity in x and permissible

loading in y.

Caveats

Nothing - at least not known.
If you found something, please contact us!

Schematic Line Graphic

Schematic drawing information for a line model.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	graphicLayer

	–

	
Human readable identifier of the graphic layer to draw

this element on

	path

	–

	Line string of coordinates describing the drawing

	line

	–

	Reference to the physical line model

Caveats

Nothing - at least not known.
If you found something, please contact us!

Switch

Model of an ideal switch connecting two node models of the same voltage level

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	nodeA

	–

	

	nodeB

	–

	

	closed

	–

	true, if the switch is closed

Caveats

Nothing - at least not known.
If you found something, please contact us!

Two Winding Transformer

Model of a two winding transformer.
It is assumed, that node A is the node with higher voltage.

Attributes, Units and Remarks

Type Model

All impedances and admittances are given with respect to the higher voltage side.
As obvious, the parameter can be used in T- as in 𝜋-equivalent circuit representations.

	Attribute

	Unit

	Remarks

	uuid

	
	

	id

	
	Human readable identifier

	rSc

	Ω

	Short circuit resistance

	xSc

	Ω

	Short circuit impedance

	gM

	nS

	No load conductance

	bM

	nS

	No load susceptance

	sRated

	kVA

	Rated apparent power

	vRatedA

	kV

	Rated voltage at higher voltage terminal

	vRatedB

	kV

	Rated voltage at lower voltage terminal

	dV

	%

	Voltage magnitude increase per tap position

	dPhi

	°

	Voltage angle increase per tap position

	tapSide

	
	true, if tap changer is installed on lower voltage side

	tapNeutr

	
	Neutral tap position

	tapMin

	
	Minimum tap position

	tapMax

	
	Maximum tap position

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	nodeA

	–

	Higher voltage node

	nodeB

	–

	Lower voltage node

	parallelDevices

	–

	Amount of parallel devices of same attributes

	type

	–

	

	tapPos

	–

	Current position of the tap changer

	autoTap

	–

	true, if there is a tap regulation apparent and active

Caveats

Nothing - at least not known.
If you found something, please contact us!

Three Winding Transformer

Model of a three winding transformer.
It is assumed, that node A is the node with highest, node B with intermediate and node C with lowest voltage.

The assumed mathematical model is inspired by ABB Schaltanlagenhanbuch [Gremmel1999], but with the addition of a
central phase-to-ground admittance, cf. following picture.

[image: Equivalent circuit diagram of a three winding transformer]

“Star like” T-equivalent circuit diagram of a three winding transformer

Attributes, Units and Remarks

Type Model

All impedances and admittances are given with respect to the higher voltage side.

	Attribute

	Unit

	Remarks

	uuid

	
	

	id

	
	Human readable identifier

	rScA

	Ω

	Short circuit resistance in branch A

	rScB

	Ω

	Short circuit resistance in branch B

	rScC

	Ω

	Short circuit resistance in branch C

	xScA

	Ω

	Short circuit impedance in branch A

	xScB

	Ω

	Short circuit impedance in branch B

	xScC

	Ω

	Short circuit impedance in branch C

	gM

	nS

	No load conductance

	bM

	nS

	No load susceptance

	sRatedA

	kVA

	Rated apparent power of branch A

	sRatedB

	kVA

	Rated apparent power of branch B

	sRatedC

	kVA

	Rated apparent power of branch C

	vRatedA

	kV

	Rated voltage at higher node A

	vRatedB

	kV

	Rated voltage at higher node B

	vRatedC

	kV

	Rated voltage at higher node C

	dV

	%

	Voltage magnitude increase per tap position

	dPhi

	°

	Voltage angle increase per tap position

	tapNeutr

	
	Neutral tap position

	tapMin

	
	Minimum tap position

	tapMax

	
	Maximum tap position

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	nodeA

	–

	Higher voltage node

	nodeB

	–

	Intermediate voltage node

	nodeC

	–

	Lowest voltage node

	parallelDevices

	–

	Amount of parallel devices of same attributes

	type

	–

	

	tapPos

	–

	Current position of the tap changer

	autoTap

	–

	true, if there is a tap regulation apparent and active

Caveats

Nothing - at least not known.
If you found something, please contact us!

	Gremmel1999

	Gremmel, H., Ed., Schaltanlagen. Cornelsen Verlag, 1999, Vol. 10, isbn: 3-464-48235-9.

Measurement Unit

Representation of a measurement unit placed at a node.
It can be used to mark restrictive access to simulation results to e.g. control algorithms.
The measured information are indicated by boolean fields.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	vMag

	–

	Voltage magnitude measurements are available

	vAng

	–

	Voltage angle measurements are available

	p

	–

	Active power measurements are available

	q

	–

	Reactive power measurements are available

Caveats

Nothing - at least not known.
If you found something, please contact us!

Grid Container

The grid container groups all entities that are able to form a full grid model.
Two types of grid containers are available:

	JointGridContainer

	This one is able to hold a grid model spanning several voltage levels.
On instantiation, a sub grid topology graph is built.
This graph holds SubGridContainers as vertices and transformer models as edges.
Thereby, you are able to discover the topology of galvanically separated sub grids and access those sub models
directly.

and

	SubGridContainer

	This one is meant to hold all models, that form a galvanically separated sub grid.
In contrast to the JointGridContainer it only covers one voltage level and therefore has an additional field
for the predominant voltage level apparent in the container.
Why predominant?
As of convention, the SubGridContainers hold also reference to the transformers leading to higher sub grids
and their higher voltage coupling point.

[image: Sub grid boundary definition for transformers with upstream switchgear]

Let’s shed a more detailed light on the boundaries of a sub grid as of our definition.
This especially is important, if the switchgear of the transformer is modeled in detail.
We defined, that all nodes in upstream direction of the transformer, that are connected by switches only (therefore
are within the switchgear) are counted towards the inferior sub grid structure (here “2”), although they belong to a
different voltage level.
This decision is taken, because we assume, that the interest to operate on the given switchgear will most likely be
placed in the inferior grid structure.

The “real” coupling node A is not comprised in the sub grids node collection, but obviously has reference through the
switch between nodes A and B.

A synoptic overview of both classes’ attributes is given here:

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	gridName

	–

	Human readable identifier

	rawGrid

	–

	see below

	systemParticipants

	–

	see below

	graphics

	–

	see below

	subGridTopologyGraph

	–

	topology of sub grids - only JointGridContainer

	predominantVoltageLevel

	–

	main voltage level - only SubGridContainer

	subnet

	–

	sub grid number - only SubGridContainer

RawGridElements

This sub container simply holds:

	nodes

	lines

	switches

	two winding transformers

	three winding transformers

	measurement units

SystemParticipants

This sub container simply holds:

	biomass plants

	combined heat and power plants

	electric vehicles

	electric vehicle charging stations

	fixed feed in facilities

	heat pumps

	loads

	photovoltaic power plants

	electrical energy storages

	wind energy converters

and the needed nested thermal models.

Graphics

This sub container simply holds:

	schematic node graphics

	schematic line graphics

Caveats

Nothing - at least not known.
If you found something, please contact us!

General Remarks on Participant Models

Reactive Power Characteristics

Reactive power characteristics are designed to describe reactive power control behaviour of the models.
In Germany, system operators can require system participants to follow certain characteristics specified in the
operators technical requirements and individually selected per connected asset.

Currently three different characteristics are implemented:

Fixed Power Factor

Active and reactive power are coupled by a time-independent power factor.
It can be parsed from cosPhiFixed:{(0.0, 0.95)} (exemplary).

Active Power Dependent Power Factor

The power factor is determined based on the current active power feed in or consumption.
The characteristic in the figure below would be described by the three coordinates (0.0, 1.0), (0.9,1.0) and (1.0, 0.95).
Alternatively it can be parsed from cosPhiP:{(0.0, 1.0),(0.9,1.0),(1.0, 0.95)}.

[image: Active power dependent power factor]

Exemplary active power dependent power factor

Reactive Power as Function of Nodal Voltage Magnitude

The reactive power is directly derived in accordance to the nodal voltage magnitude.
The characteristic in the figure below would be described by the three coordinates (0.92, -1), (0.97, 0.0), (1.03, 0.0)
and (1.08, 1.0).
Alternatively it can be parsed from qV:{(0.92, -1),(0.97, 0.0),(1.03, 0.0),(1.08, 1.0)}.

[image: Reactive power as function of nodal voltage magnitude]

Exemplary reactive power as function of nodal voltage magnitude

Biomass plant

Model of a biomass power plant.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	capex

	€

	Capital expenditure to purchase one entity of this type

	opex

	€ / MWh

	
Operational expenditure to operate one entity of

this type

	activePowerGradient

	% / h

	Maximum permissible rate of change of power

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

	etaConv

	%

	Efficiency of the assets inverter

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	type

	–

	

	marketReaction

	–

	
Whether to adapt output based on (volatile)

market price or not

	costControlled

	–

	
Whether to adapt output based on the difference

between production costs and fixed feed in tariff or not

	feedInTariff

	€ / MWh

	Fixed feed in tariff

Caveats

Nothing - at least not known.
If you found something, please contact us!

Combined Heat and Power Plant

Combined heat and power plant.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	capex

	€

	Capital expenditure to purchase one entity of this type

	opex

	€ / MWh

	
Operational expenditure to operate one entity of

this type

	etaEl

	%

	Efficiency of the electrical inverter

	etaThermal

	%

	Thermal efficiency of the system

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

	pThermal

	kW

	Rated thermal power (at rated electrical power)

	pOwn

	kW

	Needed self-consumption

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	thermalBus

	–

	Connection point to the thermal system

	qCharacteristics

	–

	Reactive power characteristic to follow

	type

	–

	

	thermalStorage

	–

	Reference to thermal storage

	marketReaction

	–

	
Whether to adapt output based on (volatile)

market price or not

Caveats

Nothing - at least not known.
If you found something, please contact us!

Electric Vehicle

Model of an electric vehicle, that is occasionally connected to the grid via an electric vehicle charging system.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	capex

	€

	Capital expenditure to purchase one entity of this type

	opex

	€ / MWh

	
Operational expenditure to operate one entity of

this type

	eStorage

	kWh

	Available battery capacity

	eCons

	kWh / km

	Energy consumption per driven kilometre

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	type

	–

	

Caveats

The node attribute only marks the vehicles home connection point.
The actual connection to the grid is always given through EvcsInput’s relation.

Electric Vehicle Charging Station

Model of a charging station for electric vehicles. This model only covers the basic characteristics of a charging
station and has some limitations outlined below.

Model Definition

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	type

	–

	Charging point type (valid for all installed points)

	chargingPoints

	–

	no of installed charging points @ the specific station

	cosPhiRated

	–

	Rated power factor

Type Model

In contrast to other models, electric vehicle charging station types are not configured via separate type file or table,
but ‘inline’ of a charging station entry. This is justified by the fact, that the station type (in contrast to e.g.
the type of a wind energy converter) only consists of a few, more or less standardized parameters, that are (most of the
time) equal for all manufacturers. Hence, to simplify the type model handling, types are provided either by a string
literal of their id or by providing a custom one. See Charging point types for details of on
available standard types and how to use custom types.

The actual model definition for charging point types looks as follows:

	Attribute

	Unit

	Remarks

	id

	–

	Human readable identifier

	sRated

	kVA

	Rated apparent power

	electricCurrentType

	–

	Electric current type

	synonymousIds

	–

	Set of alternative human readable identifiers

Charging Point Types

Available Standard Types

To simplify the application of electric vehicle charging stations, some common standard types are available out-of-the-box.
They can either by used code wise or directly from database or file input by referencing their id or one of their
synonymous ids. All standard types can be found in edu.ie3.datamodel.models.input.system.type.chargingpoint.ChargingPointTypeUtils.

	id

	synonymous ids

	sRated in kVA

	electric current type

	HouseholdSocket

	household, hhs, schuko-simple

	2.3

	AC

	BlueHouseholdSocket

	bluehousehold, bhs, schuko-camping

	3.6

	AC

	Cee16ASocket

	cee16

	11

	AC

	Cee32ASocket

	cee32

	22

	AC

	Cee63ASocket

	cee63

	43

	AC

	ChargingStationType1

	cst1, stationtype1, cstype1

	7.2

	AC

	ChargingStationType2

	cst2, stationtype2, cstype2

	43

	AC

	ChargingStationCcsComboType1

	csccs1, csccscombo1

	11

	DC

	ChargingStationCcsComboType2

	csccs2, csccscombo2

	50

	DC

	TeslaSuperChargerV1

	tesla1, teslav1, supercharger1, supercharger

	135

	DC

	TeslaSuperChargerV2

	tesla2, teslav2, supercharger2

	150

	DC

	TeslaSuperChargerV3

	tesla3, teslav3, supercharger3

	250

	DC

Custom Types

While the provided standard types should be suitable for most scenarios, providing an individual type for a specific
scenario might be necessary. To do so, a custom type can be provided instead of a common id. This custom type is tested
against the following regex (\w+\d*)\s*\(\s*(\d+\.?\d+)\s*\|\s*(AC|DC)\s*\), or more generally, the custom
type string has to be in the following syntax:

<Name>(<Apparent Power in kVA>|<AC|DC>) e.g. FastCharger(50|DC) or SlowCharger(2.5|AC)

Please note, that in accordance with edu.ie3.datamodel.models.StandardUnits the apparent power is expected to
be in kVA!

Limitations

	the available charging types are currently limited to only some common standard charging point types and not configurable
via a type file or table. Nevertheless, providing custom types is possible using the syntax explained above.
If there is additional need for a more granular type configuration via type file please contact us.

	each charging station can hold one or more charging points. If more than one charging point is available
all attributes (e.g. sRated or connectionType) are considered to be equal for all connection
points

Caveats

Nothing - at least not known.
If you found something, please contact us!

Fixed Feed In Facility

Model of a facility, that provides constant power feed in, as no further information about the actual behaviour of the
model can be derived.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

Caveats

Nothing - at least not known.
If you found something, please contact us!

Heat Pump

Model of a heat pump.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	capex

	€

	Capital expenditure to purchase one entity of this type

	opex

	€ / MWh

	
Operational expenditure to operate one entity of

this type

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

	pThermal

	kW

	Rated thermal power (at rated electrical power)

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	thermalBus

	–

	Connection point to the thermal system

	qCharacteristics

	–

	Reactive power characteristic to follow

	type

	–

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Load

Model of (mainly) domestic loads.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	standardLoadProfile

	–

	Standard load profile as model behaviour

	dsm

	–

	Whether the load is able to follow demand side management signals

	eConsAnnual

	kWh

	Annual energy consumption

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

Caveats

Nothing - at least not known.
If you found something, please contact us!

Standard Load Profiles

The StandardLoadProfile is an interface, that forces it’s implementing classes to have a String key
and being able to parse a String to an StandardLoadProfile.
Its only purpose is to give note, which standard load profile has to be used by the simulation.
The actual profile has to be provided by the simulation itself.
If no matching standard load profile is known, StandardLoadProfile#NO_STANDARD_LOAD_PROFILE can be used.

To assist the user in marking the desired load profile, the enum BdewLoadProfile provides a collection of
commonly known German standard electricity load profiles, defined by the bdew (Bundesverband der Energie- und
Wasserwirtschaft; engl. Federal Association of the Energy and Water Industry). For more details see
the corresponding website (German only) [https://www.bdew.de/energie/standardlastprofile-strom/].

Photovoltaic Power Plant

Detailed model of a photovoltaic power plant.

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	albedo

	–

	Albedo [https://en.wikipedia.org/wiki/Albedo] of the plant’s surrounding

	azimuth

	°

	
Inclination in a compass direction

South = 0°, West = 90°, East = -90°

	etaConv

	%

	Efficiency of the assets inverter

	height

	°

	Tilted inclination from horizontal [0°, 90°]

	kG

	–

	Generator correction factor merging technical influences

	kT

	–

	Temperature correction factor merging thermal influences

	marketReaction

	–

	
Whether to adapt output based on (volatile)

market price or not

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

Caveats

Nothing - at least not known.
If you found something, please contact us!

Electrical Energy Storage

Model of an ideal electrical battery energy storage.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	capex

	€

	Capital expenditure to purchase one entity of this type

	opex

	€ / MWh

	
Operational expenditure to operate one entity of

this type

	eStorage

	kWh

	Battery capacity

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

	pMax

	kW

	
Maximum permissible active power

infeed or consumption

	activePowerGradient

	% / h

	Maximum permissible rate of change of power

	eta

	%

	Efficiency of the electrical inverter

	dod

	%

	
Maximum permissible depth of discharge. 80 % dod

is equivalent to a state of charge of 20 %.

	lifeTime

	h

	Permissible hours of full use

	lifeCycle

	–

	Permissible amount of full cycles

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	type

	–

	

	behaviour

	–

	
Foreseen operation strategy of the storage.

Eligible input: “market”, “grid”, “self”

Caveats

The field behaviour will be removed in version 1.x, as this is an information, that is only important to a
smaller sub set of simulation applications.

Wind Energy Converter

Model of a wind energy converter.

Attributes, Units and Remarks

Type Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	capex

	€

	Capital expenditure to purchase one entity of this type

	opex

	€ / MWh

	
Operational expenditure to operate one entity of

this type

	sRated

	kVA

	Rated apparent power

	cosphiRated

	–

	Rated power factor

	cpCharacteristic

	–

	Wind velocity dependent Betz factors.

	etaConv

	%

	Efficiency of the assets inverter

	rotorArea

	m²

	Area the rotor covers

	hubHeight

	m

	Height of the rotor hub

Entity Model

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	node

	–

	

	qCharacteristics

	–

	Reactive power characteristic to follow

	type

	–

	

	marketReaction

	–

	
Whether to adapt output based on (volatile)

market price or not

Caveats

Nothing - at least not known.
If you found something, please contact us!

Betz Characteristic

A collection of wind velocity to Betz factor pairs to be applied in
Betz’s law [https://en.wikipedia.org/wiki/Betz's_law] to determine the wind energy coming onto the rotor area.

Thermal Bus

A coupling point to thermal system - equivalent to electrical node.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	bus

	–

	Connection point to the thermal system

Caveats

Nothing - at least not known.
If you found something, please contact us!

Thermal House Model

Model for the thermal behaviour of a building.
This reflects a simple shoe box with transmission losses

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	ethLosses

	kW / K

	Thermal losses

	ethCapa

	kWh / K

	Thermal capacity

Caveats

Nothing - at least not known.
If you found something, please contact us!

Cylindrical Thermal Storage

Model of a cylindrical thermal storage using a fluent to store thermal energy.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	

	id

	–

	Human readable identifier

	operator

	–

	

	operationTime

	–

	Timely restriction of operation

	thermalBus

	–

	Connection point to the thermal system

	storageVolumeLvl

	m³

	Overall available storage volume

	storageVolumeLvlMin

	m³

	Minimum permissible storage volume

	inletTemp

	°C

	Temperature of the inlet

	returnTemp

	°C

	Temperature of the outlet

	c

	kWh / (K \(\cdot\) m³)

	Specific heat capacity of the storage medium

Caveats

Nothing - at least not known.
If you found something, please contact us!

Node

Representation of an electrical node, with no further distinction into bus bar, auxiliary node or others.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	vMag

	p.u.

	

	vAng

	degree

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Connector

Representation of all kinds of connectors.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	iAMag

	ampere

	A stands for sending node

	iAAng

	degree

	

	iBMag

	ampere

	B stands for receiving node

	iBAng

	degree

	

Caveats

Groups all available connectors i.e. lines, switches and transformers

Line

Representation of an AC line.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	iAMag

	ampere

	A stands for sending node

	iAAng

	degree

	

	iBMag

	ampere

	B stands for receiving node

	iBAng

	degree

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Switch

Representation of electrical switches.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	iAMag

	ampere

	A stands for sending node

	iAAng

	degree

	

	iBMag

	ampere

	B stands for receiving node

	iBAng

	degree

	

	closed

	boolean

	status of the switching device

Caveats

Nothing - at least not known.
If you found something, please contact us!

Transformer

Representation of transformers.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	iAMag

	ampere

	A stands for sending node

	iAAng

	degree

	

	iBMag

	ampere

	B stands for receiving node

	iBAng

	degree

	

	tapPos

	–

	

Caveats

Groups common information to both 2W and 3W transformers.

Two Winding Transformer

Representation of two winding transformers.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	iAMag

	ampere

	A stands for sending node

	iAAng

	degree

	

	iBMag

	ampere

	B stands for receiving node

	iBAng

	degree

	

	tapPos

	–

	

Caveats

Assumption: Node A is the node at higher voltage.

Three Winding Transformer

Representation of three winding transformers.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	ZonedDateTime

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	iAMag

	ampere

	A stands for sending node

	iAAng

	degree

	

	iBMag

	ampere

	B stands for receiving node

	iBAng

	degree

	

	iCMag

	ampere

	B stands for receiving node

	iCAng

	degree

	

	tapPos

	–

	

Caveats

Assumption: Node A is the node at highest voltage and Node B is at intermediate voltage.
For model specifications please check corresponding input model documentation.

Biomass plant

Result of a biomass power plant.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Combined Heat and Power Plant

Result of a combined heat and power plant.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

	qDot

	MW

	Thermal power

Caveats

Nothing - at least not known.
If you found something, please contact us!

Electric Vehicle

Result of an electric vehicle, that is occasionally connected to the grid via an electric vehicle charging station.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

	soc

	–

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Electric Vehicle Charging Station

This model is currently only a dummy implementation of an electric vehicle charging station.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Fixed Feed In Facility

Result of a facility, that provides constant power feed in, as no further information about the actual behaviour of the
model can be derived.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Load

Result of a heat pump.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

	qDot

	MW

	Thermal power

Caveats

Nothing - at least not known.
If you found something, please contact us!

Load

Result of (mainly) domestic loads.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Photovoltaic Power Plant

Result of a photovoltaic power plant.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Electrical Energy Storage

Result of an electrochemical storage

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

	soc

	–

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Wind Energy Converter

Result of a wind turbine.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Thermal Sink

Result of a thermal sink.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	qDot

	MW

	thermal heat demand

Caveats

Nothing - at least not known.
If you found something, please contact us!

Thermal Storage

Result of a thermal storage.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	energy

	MWh

	

	qDot

	MW

	heat flowing in

Caveats

Nothing - at least not known.
If you found something, please contact us!

Thermal Unit

Result of a thermal unit.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	qDot

	MW

	thermal power exchanged

Caveats

Nothing - at least not known.
If you found something, please contact us!

Thermal House

Model for the thermal behaviour of a building.
This reflects a simple shoe box with transmission losses

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	qDot

	MW

	thermal heat demand of the sink

	indoorTemperature

	°C

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

Cylindrical Thermal Storage

Result of a cylindrical thermal storage using a fluent to store thermal energy.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	energy

	MWh

	

	qDot

	MW

	heat demand of the sink

	fillLevel

	–

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

System Participant

Groups together all system participants such as PV, Storage etc.

Attributes, Units and Remarks

	Attribute

	Unit

	Remarks

	uuid

	–

	uuid for the result entity

	time

	–

	date and time for the produced result

	inputModel

	–

	uuid for the associated input model

	p

	MW

	

	q

	MVAr

	

Caveats

Nothing - at least not known.
If you found something, please contact us!

I/O

The PowerSystemDataModel library additionally offers I/O-capabilities.
In the long run, it is our aim to provide many different source and sink technologies.
Therefore, the I/O-package is structured as highly modular.

	InfluxDB
	Introduction to InfluxDB

	Instantiating an InfluxDB DataConnector

	csv files
	Naming of files

	Default naming strategy

	Default directory hierarchy

	De-Serialization (loading models)

	Serialization (writing models)

	Compression and extraction of files

InfluxDB

InfluxDB [https://www.influxdata.com/products/influxdb-overview/] is a time series database. As such, it can only
handle time based data like weather data or results.
The PowerSystemDataModel offers two interface implementations for InfluxDB 1.x: WeatherSource and OutputDataSink.

Introduction to InfluxDB

InfluxDB is a NoSQL database as it is neither relational nor able to handle SQL queries, even though InfluxDB’s own
QueryLanguage, InfluxQL [https://docs.influxdata.com/influxdb/v1.8/query_language/] is very similar to SQL.
InfluxDB persists data in measurements. A measurement is comparable to a table in a relational data model. It consists
of a measurement name, fields, tags and a time column. The measurement name is the equivalent of a table name. Fields
and tags are similar as they both hold data like columns in relational data. But while fields are supposed to hold
the actual data, tags should only hold metadata, which is why tag values can only be strings. Under default
configuration, one tag key can only hold 10 000 distinct tag values. This choice was made as tags are indexed and
supposed to be queried. Fields should only be queried if not avoidable. The time column is automatically provided, it
holds timestamps in RFC3339 UTC [https://www.ietf.org/rfc/rfc3339.txt], which for example looks like
“2020-06-22T10:14:50.52Z”. The equivalent to a table row is a measurement point. It holds field and tag values as well
as the time. While the data values are optional, a timestamp is not. If no time is provided when persisting, the current
system time is used.

Instantiating an InfluxDB DataConnector

To instantiate an InfluxDbConnector a connection url, a database name and a scenario name should be provided. The
scenario name is used to build measurement names for results.
If none of those are provided, default values are used.

InfluxDbConnector unparameterizedInfluxDb = new InfluxDbConnector();
InfluxDbConnector defaultInfluxDb = new InfluxDbConnector(""http://localhost:8086/", "ie3_in", null);
unparameterizedInfluxDb.equals(defaultInfluxDb); //true

csv files

Naming of files

A naming strategy provides a mapping between model classes and the human readable names of those entities to be used
within e.g. the data sinks, in which the serialized representation of several objects of this class can be found.
Currently we offer two different, pre-defined naming strategies, which you might extend to fit your needs:

	EntityPersistenceNamingStrategy:
A basic naming strategy that is able to add prefix and suffix to the names of the entities. A flat folder structure
is considered. For more details see Default naming strategy.

	HierarchicFileNamingStrategy:
An extended version of the EntityPersistenceNamingStrategy. Additionally, the Default directory hierarchy is taken
into account. Please note, that this directory hierarchy is only meant to be used in conjunction with input models.

However, you can control the behaviour of serialization and de-serialization of models by injecting the desired naming
strategy you like into CsvDataSource and CsvFileSink.

Default naming strategy

There is a default mapping from model class to naming of entities in the case you would like to use csv files for
(de-)serialization of models.
You may extend / alter the naming with pre- or suffix by calling new EntityPersistenceNamingStrategy("prefix","suffix").

Input

	Model

	File Name

	operator

	prefix_operator_input_suffix

	node

	prefix_node_input_suffix

	line

	
prefix_line_input_suffix

prefix_line_type_input_suffix

	switch

	prefix_switch_input_suffix

	two winding transformer

	
prefix_transformer2w_input_suffix

prefix_transformer2w_type_input_suffix

	three winding transformer

	
prefix_transformer3w_input_suffix

prefix_transformer3w_type_input_suffix

	measurement unit

	prefix_measurement_unit_input_suffix

	biomass plant

	
prefix_bm_input_suffix

prefix_bm_type_input_suffix

	combined heat and power plant

	
prefix_chp_input_suffix

prefix_chp_type_input_suffix

	electric vehicle

	
prefix_ev_input_suffix

prefix_ev_type_input_suffix

	electric vehicle charging station

	prefix_evcs_input_suffix

	fixed feed in facility

	prefix_fixed_feed_in_input_suffix

	heat pump

	
prefix_hp_input_suffix

prefix_hp_type_input_suffix

	load

	prefix_load_input_suffix

	photovoltaic power plant

	prefix_pc_input_suffix

	electrical energy storage

	
prefix_storage_input_suffix

prefix_storage_type_input_suffix

	wind energy converter

	
prefix_wec_input_suffix

prefix_wec_type_input_suffix

	schematic node graphic

	prefix_node_graphic_input_suffix

	schematic line graphic

	prefix_line_graphic_input_suffix

Time Series

	Model

	File Name

	individual time series

	prefix_its_columnScheme_UUID_suffix

	load profile input

	prefix_rts_profileKey_UUID_suffix

Let’s spend a few more words on the individual time series:
Those files are meant to carry different types of content - one might give information about wholesale market prices,
the other is a record of power values provided by a real system.
To be able to understand, what’s inside of the file, the columnScheme part of the file name gives insight of it’s
content.
The following keys are supported until now:

	Key

	Information and supported head line

	c

	
An energy price (e.g. in €/MWh; c stands for charge).

Permissible head line: uuid,time,price

	p

	
Active power

Permissible head line: uuid,time,p

	pq

	
Active and reactive power

Permissible head line: uuid,time,p,q

	h

	
Heat power demand

Permissible head line: uuid,time,h

	ph

	
Active and heat power

Permissible head line: uuid,time,p,h

	pqh

	
Active, reactive and heat power

Permissible head line: uuid,time,p,q,h

	weather

	
Weather information

Permissible head line:

uuid,time,coordinate,direct_irradiation,diffuse_irradiation,temperature,wind_velocity,wind_direction

As the uuid and time field are mandatory, they are not mentioned explicitly, here.

Results

	Model

	File Name

	node

	prefix_node_res_suffix

	line

	prefix_line_res_suffix

	switch

	prefix_switch_res_suffix

	two winding transformer

	prefix_transformer2w_res_suffix

	three winding transformer

	prefix_transformer3w_res_suffix

	biomass plant

	prefix_bm_res_suffix

	combined heat and power plant

	prefix_chp_res_suffix

	electric vehicle

	prefix_ev_res_suffix

	electric vehicle charging station

	prefix_evcs_res_suffix

	fixed feed in

	prefix_fixed_feed_in_res_suffix

	heat pump

	prefix_hp_res_suffix

	load

	prefix_load_res_suffix

	photovoltaic power plant

	prefix_pv_res_suffix

	storage

	prefix_storage_res_suffix

	wind energy converter

	prefix_wec_res_suffix

	thermal house model

	prefix_thermal_house_res_suffix

	cylindrical thermal storage

	prefix_cylindrical_storage_res_suffix

Default directory hierarchy

Although there is no fixed structure of files mandatory, there is something, we consider to be a good idea of
structuring things.
You may either ship your csv files directly in this structure or compress everything in a .tar.gz file.
However, following this form, we are able to provide you some helpful tools in obtaining and saving your models a bit
easier.

[image: Default directory hierarchy for input classes]

Default directory hierarchy for input classes

[image: Default directory hierarchy for result classes]

Default directory hierarchy for result classes

The italic parts are optional and the others are mandatory.
As you see, this still is a pretty flexible approach, as you only need to provide, what you really need.
However, note that this hierarchy is only meant to be used in conjunction with input models, yet.

The class DefaultInputHierarchy offers some helpful methods to validate and create a default input file
hierarchy.

De-Serialization (loading models)

Having an instance of Grid Container is most of the time the target whenever you load your
grid. It consists of the three main blocks:

	Raw grid elements

	System participants

	Graphics

Those blocks are also reflected in the structure of data source interface definitions.
There is one source for each of the containers, respectively.

[image: Class diagram of data sources]

Class diagram of data sources

As a full data set has references among the models (e.g. a line model points to its’ nodes it connects), there is a
hierarchical structure, in which models have to be loaded.
Therefore, the different sources have also references among themselves.
An application example to load an exampleGrid from csv files located in ./exampleGrid could look like this:

/* Parameterization */
String gridName = "exampleGrid";
String csvSep = ",";
String folderPath = "./exampleGrid";
EntityPersistenceNamingStrategy namingStrategy = new EntityPersistenceNamingStrategy(); // Default naming strategy

/* Instantiating sources */
TypeSource typeSource = new CsvTypeSource(csvSep, folderPath, namingStrategy);
RawGridSource rawGridSource = new CsvRawGridSource(csvSep, folderPath, namingStrategy, typeSource);
ThermalSource thermalSource = new CsvThermalSource(csvSep, folderPath, namingStrategy, typeSource);
SystemParticipantSource systemParticipantSource = new CsvSystemParticipantSource(
 csvSep,
 folderPath,
 namingStrategy,
 typeSource,
 thermalSource,
 rawGridSource
);
GraphicSource graphicsSource = new CsvGraphicSource(
 csvSep,
 folderPath,
 namingStrategy,
 typeSource,
 rawGridSource
);

/* Loading models */
RawGridElements rawGridElements = rawGridSource.getGridData().orElseThrow(
 () -> new SourceException("Error during reading of raw grid data."));
SystemParticipants systemParticipants = systemParticipantSource.getSystemParticipants().orElseThrow(
 () -> new SourceException("Error during reading of system participant data."));
GraphicElements graphicElements = graphicsSource.getGraphicElements().orElseThrow(
 () -> new SourceException("Error during reading of graphic elements."));
JointGridContainer fullGrid = new JointGridContainer(
 gridName,
 rawGridElements,
 systemParticipants,
 graphicElements
);

As observable from the code, it doesn’t play a role, where the different parts come from.
It is also a valid solution, to receive types from file, but participants and raw grid elements from a data base.
Only prerequisite is an implementation of the different interfaces for the desired data source.

Serialization (writing models)

Serializing models is a bit easier:

/* Parameterization */
String csvSep = ",";
String folderPath = "./exampleGrid";
EntityPersistenceNamingStrategy namingStrategy = new EntityPersistenceNamingStrategy();
boolean initEmptyFiles = false;

/* Instantiating the sink */
CsvFileSink sink = new CsvFileSink(folderPath, namingStrategy, initEmptyFiles, csvSep);
sink.persistJointGridContainer(grid);

The sink takes a collection of model suitable for serialization and handles the rest (e.g. unboxing of nested models)
on its own.
But caveat: As the (csv) writers are implemented in a concurrent, non-blocking way, duplicates of nested models could
occur.

Compression and extraction of files

We consider either regular directories or compressed tarball archives [https://en.wikipedia.org/wiki/Tar_(computing)]
(*.tar.gz) as source of input files.
The class TarballUtils offers some helpful functions to compress or extract input data files for easier shipping.

Index

Validation Utils

This page gives an overview about the ValidationUtils in the PowerSystemDataModel.

What are the ValidationUtils?

The methods in ValidationUtils and subclasses can be used to check that objects are valid, meaning their parameters have valid values and they are correctly connected.

What is checked?

	The check methods include checks that assigned values are valid, e.g. lines are not allowed to have negative lengths or the rated power factor of any unit must be between 0 and 1.

	Furthermore, several connections are checked, e.g. that lines only connect nodes of the same voltage level or that the voltage levels indicated for the transformer sides match the voltage levels of the nodes they are connected to.

How does it work?

	The method ValidationUtils.check(Object) is the only method that should be called by the user.

	This check method identifies the object class and forwards it to a specific check method for the given object

	The overall structure of the ValidationUtils methods follows a cascading scheme, orientated along the class tree

	
	Example: A LineInput lineInput should be checked

	
	ValidationUtils.check(lineInput) is called

	ValidationUtils.check(lineInput) identifies the class of the object as AssetInput and calls ValidationUtils.checkAsset(lineInput)

	ValidationUtils.checkAsset(lineInput), if applicable, checks those parameters that all AssetInput have in common (e.g. operation time) and further identifies the object, more specifically, as a ConnectorInput and calls ConnectorValidationUtils.check(lineInput)

	ConnectorValidationUtils.check(lineInput), if applicable, checks those parameters that all ConnectorInput have in common and further identifies the object, more specifically, as a LineInput and calls ConnectorValidationUtils.checkLine(lineInput)

	ConnectorValidationUtils.checkLine(lineInput) checks all specific parameters of a LineInput

	ValidationUtils furthermore contains several utils methods used in the subclasses

Which objects are checked?

The ValidationUtils include validation checks for…

	
	NodeValidationUtils

	
	NodeInput

	VoltageLevel

	
	ConnectorValidationUtils:

	
	
	ConnectorInput

	
	LineInput

	Transformer2WInput

	Transformer3WInput

	SwitchInput

	
	ConnectorTypeInput

	
	LineTypeInput

	Transformer2WTypeInput

	Transformer3WTypeInput

	
	MeasurementUnitValidationUtils

	
	MeasurementUnitInput

	
	SystemParticipantValidationUtils

	
	
	SystemParticipantInput

	
	BmInput

	ChpInput

	EvInput

	FixedFeedInInput

	HpInput

	LoadInput

	PvInput

	StorageInput

	WecInput

	(missing: EvcsInput)

	
	SystemParticipantTypeInput

	
	BmTypeInput

	ChpTypeInput

	EvTypeInput

	HpTypeInput

	StorageTypeInput

	WecTypeInput

	(missing: EvcsTypeInput/ChargingPointType)

	
	ThermalUnitValidationUtils

	
	
	ThermalUnitInput

	
	
	ThermalSinkInput

	
	ThermalHouseInput

	
	ThermalStorageInput

	
	CylindricalStorageInput

	
	GraphicValidationUtils

	
	
	GraphicInput

	
	LineGraphicInput

	NodeGraphicInput

	
	GridContainerValidationUtils

	
	GraphicElements

	GridContainer

	RawGridElements

	SystemParticipants

What should be considered?

	Due to many checks with if-conditions, the usage of the ValidationUtils for many objects might be runtime relevant.

	The check for a GridContainer includes the interplay of the contained entities as well as the checks of all contained entities.

	If new classes are introduced to the PowerSystemDataModel, make sure to follow the forwarding structure of the ValidationUtils methods when writing the check methods!

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Documentation of the PowerSystemDataModel

 		
 Getting started

 		
 Requirements

 		
 Where to get

 		
 Stable releases

 		
 Snapshot releases

 		
 Available models

 		
 Input

 		
 Operator

 		
 Grid Related Models

 		
 Participant Related Models

 		
 Result

 		
 Grid Related Models

 		
 Participant Related Models

 		
 Time Series

 		
 Validation Utils

 		
 I/O

 		
 InfluxDB

 		
 Introduction to InfluxDB

 		
 Instantiating an InfluxDB DataConnector

 		
 csv files

 		
 Naming of files

 		
 Default naming strategy

 		
 Default directory hierarchy

 		
 De-Serialization (loading models)

 		
 Serialization (writing models)

 		
 Compression and extraction of files

_static/up.png

_static/up-pressed.png

_static/figures/qv.png
1.0

q
v
£

0.5

0.0

Reactive power

-10

0.90

0.95

1.00

105 pu. 110
Nodal voltage magnitude v —

_static/figures/transformerWithSwitchGear.png
%‘ L L L @ L

F A B C D E

110KV 110kV 110kV 110kV 10kV
1 2 2 2 2

_static/figures/cosPhiP.png
1

0.6 08 pau.
Active power p —

0.4

0.2

S B3
= ! =1
] S

0.95

— dhsoo 103085 1om0g

_static/figures/ecdTransformer3w.png
rScB, xScB

nodeA ©

O nodeB
rScA, xScA rScC, xScC
4 ——o0 nodeC
gM, bM D
. 2 O O

_static/figures/uml/CharacteristicDatamodelConcept.png
models\

@ unaueeniiy

© UUID FIELD NAME: Strin
O uid: UUD

. / \ N
. / ! \ AN
. / I \ N
. N \ N
J put \ .
, i i
/ , / \ \ system
/ , / i \ \ —
/ , / | \ \ | [characteristic\
' / , . v
i

© PREFIX: String.

© PREFIX: String.

© STARTING REGEX. Strin

© STARTING REGEX: String © CONSTANT CHARACTERISTIC: CosPhiFixed

.
result timeseries value graphics Connector’ thermal type
 PREFIX String
 STARTING REGEX. String

[«bind»A:Power

@ OlmCharacteristicinput

O CONSTANT CHARACTERISTIC: OlmCharacteristicinput

N ALY
@) reactiverowercharacteristic

arse(String): ReactivePowerCharacteristic

©Evcharac(enshc\npm

©Wsccharac(enshc\npm

= bulldConstantCharacteristic(): OlmCharacteristicinput

[«bind»A::Dimensionless,0: Dimensionless [«bind»A::Speed, 0 :Dimensionless [«bind»A::Power, 0::Dimensionless [«bind»A::Speed, 0 :Dimensionless

@ Characteristicinput

& characteristicPrefix: String
& decimalPlaces: int
© points: SortedSet<CharacteristicPoint<A,0>>

© deSerialize(): String
© bulldStartingRegex(String): Strin

xdractCoordinateList(String): String
B buildCoordinatesFromstring(String, Unit<A>, Unit<0>): SortedSet<CharacteristicPoint<A, 0>>

i
A Bxtends Quantity <A, 0 Sxtends QUANtIT<0%]

(©) characteristicPoint

‘o REQUIRED _FORMAT. Strin
0 ComparableQuantity<A>
Oy ComparableQuantity<0>

© deSerialize(int): String
& bulldExceptionMessage(String: Strin
& bulldExceptionMessage(String, String): Strin

l«bind»:CharacteristicPoint<A, 0>
i

_static/figures/uml/ConnectorDatamodelConcept.png
Commecton)

[
B

[ope),

[

B iy et e ()

© oo

o e

[@rersomerno]

2 S o

_static/figures/uml/DataSinkClassDiagram.png
(© csvrilesink

CsvFilesink(String)
void initfiles(Processort
1 void write(UniqueEntity)

‘© CavleSInkiString, ProcessorProvider, FleNamingStrategy, boolean, String)
CsvFilesink(String, FileNamingStrateay, boolean, String)

Provider. FileNamingStrategy)

@ InputDatasink

(©) mfuDBFilesink

InfluxDbSink(influxDbConnector, FileNamingStrategy)
InfluxDbSinklinfluxDbConnector}
B Set<Point> extractPoints(UniqueEntity)

B String transformToMeasurementName(string)
& transformToPoint(UniqueEntity)

& transformToPoint(UniqueEntity. String)
B transformToPoints(TimeSeries <E.V>)

B transformToPoints(TimeSeries<E.V>, String)

© void persistignoreNestediinputEntityl
© void persistallignoreNested(Collection<InputEntity>)
© void persistincludeNested(inputEntity)

void persistallincludeNested(Collection<inputentity>)
void persistointGridjointGridContainer]

@ patasink

void persistiUniqueEntity entityl
void persistalliCollection<UniqueEntity>)
© void persistTimeSeries(TimeSeries<E.V>)

_static/figures/uml/DefaultInputDirectoryHierarchy.png
<gridnames (.tar.gz)\

input

part

bm_input.csv
chp_input.csv
ev_input.csv
evCs_inpuit.csv
fixed_feed_in_input.csv
hp_input.csv
load_input.csv
pv_input.csv
storage_input.csv
wec_input.csv

me_series\

its_<uuido> csv
its_<uidn> csv
1t5_<Uuido> csv.

1ts_<uuidn>.csv

participant_to_time_series.csv

thermal \

cylindrical_storage_input.csv
thermal_bus_input.csv
thermal_house_input.csv

graphics

line_graphic_input.csv
node_graphic_input.csv

grid\

line_input.csv
measurement_unit_input.csv
node_input.csv
switch_input.csv
transformer_2w_input.csv
transformer_3w_input.csv

global\

bm_type.csv
chp_type.csv
ev_fype.csv

hp_type.csv

line_type csv
operator_input.csv
storage_type.csv
transformer_2w_type.csv
transformer_3w type.csv
wec_type.csv
wec_characteristic_input.csv

_static/figures/uml/DefaultInputFolderStructure.png
<gridnames (.tar.gz)\

participants\|

bm_input.csv
chp_input.csv
ev_input.csv
evCs_inpuit.csv
fixed_feed_in_input.csv
hp_input.csv
load_input.csv
pv_input.csv
storage_input.csv
wec_input.csv

time_series\

its_<uuido> csv
its_<uidn> csv
1t5_<Uuido> csv.

1ts_<uuidn>.csv

participant_to_time_series.csv

thermal \

cylindrical_storage_input.csv
thermal_bus_input.csv
thermal_house_input.csv

graphics

line_graphic_input.csv
node_graphic_input.csv

[orid\

line_input.csv
measurement_unit_input.csv
node_input.csv
switch_input.csv
transformer_2w_input.csv
transformer_3w_input.csv

global\

bm_type.csv
chp_type.csv
ev_fype.csv

hp_type.csv

line_type csv
operator_input.csv
storage_type.csv
transformer_2w_type.csv
transformer_3w type.csv
wec_type.csv
wec_characteristic_input.csv

_static/figures/uml/DataSourceClassDiagram.png
@ npesaurce

Set<Transformer2WTypelnput> getTransformer2WTypes(
Set<TransformersWTypelnput> getTransformer3WTypes()
Set<Operatorinput> getOperators)

Set<LineTypeinput> getLineTypes)

Set<BmTypelnput> getBmTypes(

Set<ChpTypeinput> getChpTypes)

Set<HpTypeinput> getHpTypes)

Set<StorageTypeinput> getstorageTypes)
Set<WecTypeinput> getWecTypes()

Set<EvTypelnput> getevTypes(

'

@ mermaisource

@ Raweridsource

Optional<AawGridElements> getGridDatal

‘Set<ThermalBusinput> getThermalBuses(

Set<ThermalBusinput> getThermalBuses(Set<Operatorinput>)

Set<Thermalstorageinput> getThermalStorages()

Set<ThermalStorageinput> getThermalStorages(Set<Operatorinput>, Set<ThermalBusinput>)
Set<ThermalHouselnput> get ThermalHouses()

Set<ThermalHouselnput> getThermalHouses(Set<Operatorinput operators, Set<ThermalBusinput>)
Set<CylindricalStorageinput> getCylindricStorages()

Set<CylindricalStoragelnput> getCylindricStorages(Set<Operatorinput>, Set<ThermalBusinput>)

© compesouce

(© csvihermalsource

'O OperatorinputFactory operatorinputFactory

0 LineTypelnputFactory lineTypelnputFactory

0 Transformer2WTypelnputFactory transformer2WTypelnputFactory

0 Transformer3WTypelnputFactory transformer3WTypelnputFactory
O SystemParticipantTypelnputFactory systemParticipantTypelnputFactory

O TypeSource typeSource
0 ThermalBusinputFactory thermalBusinputFactory

o CylindricalStorageinputFactory cylindricalStoragelnputFactory
0 ThermalHouselnputFactory thermalHouselnputFactory

‘o CsvTypeSource(String, String, FilsNamingStrategy

© CsvThermalSourcel(String. String. FileNamingStrategy. TypeSource]

Set<Nodeinput> getNodes()
Set<Nodeinput> getNodes(Set<Operatorinput>)
Set<Lineinput> gettines()

@ covarasource

o String csvSep
© CsvFileConnector connector

Set<Lineinput> getLines(Set<Nodelnput>. Set<LineTypelnput>, Set<Operatorinput>)
Set<Transformer2Winput> get2WTransformers()

© CsvbataSource(String, String, FileNamingStrategy)

Set<Transformer3Winput> get3Wransformers()

Set<Switchinput> getSwitches()
Set<Switchinput> getSwitches(Set<Nodeinput>. Set<Operatorinput>)
Set<MeasurementUnitinput> getMeasurementUnits()

Set<MeasurementUnitinput> getMeasurementUnits(Set<Nodeinput>, Set<Operatorinput>)

Set<Transformer2Winput> get2WTransformers(Set<Nodeinput>, Set<Transformer2WTypeinput>, Set<Operatorinput>)

Set<Transformer3Winput> get3WTransformers(Set<Nodeinput>, Set<Transformer3WTypeinput>, Set<Operatorinput>)

@ srenpertpantssource

Optional<Systemparticipants> getsystemParticipants()

Set<Bminput> getBmPlants()

Set<Bminput> getBmPlants(Set<Nodeinput>, Set<Operatorinput>, Set<BmTypeinput>)
Set<Chpinput> getChpPlants()

Set<Chpinput> getChpPlants(Set<Nodeinput>, Set<Operatorinput>, Set<ChpTypelnput>. Set<ThermalBusinput>, Set<ThermalStorageinput>)
Set<Evinput> getevs()

Set<Evinput> getvs(Set<Nodeinput>, Set<Operatorinput>. Set<EvTypelnput>)

Set<Evesinput> getEves()

Set<Evcsinput> getEvCS(Set<Nodeinput>, Set<Operatorinput>)

Set<FixedFeedininput> getFixedFeedins()

Set<FixedFeedininput> getFixedFeedins(Set <Nodelnput>, Set<Operatorinput>)

Set<Hpinput> gettieatPumps(

Set<Hpinput> getHeatPumpsinodes, Set<Operatorinput. Set<HpTypeinput, Set<ThermalBusinput>)

Set<Loadinput> getLoads()

Set<Loadinput> getLoads(Set<Nodelnput>, Set<Operatorinput>)

Set<pvinput> getPvPlants()

Set<Pvinput> getpvplants(Set<Nodeinput>, Set<Operatorinput>)

Set<Storageinput> getstorages()

Set<Storageinput> getStorages(Set<Nodelnput>, Set<Operatorinput>, Set<StorageTypeinput>)

Set<Wecinput> getWecPlants()

Set<Wecinput> getWecPlants(Set<Nodelnput>, Set<Operatorinput>, Set<WecTypeinput>)

(© csvrawsridsource

TypeSource typeSource
NodelnputFactory nodelnputFactory

LinelnputFactory linelnputFactory
Transformer2WinputFactory transformer2WinputFactory
Transformer3WinputFactory transformer3WinputFactory
SwitchinputFactory switchinputFactory
MeasurementUnitinputFactory measurementUnitinputFactory

o[ooooooo

CsvRawGridSource(String, String, FleNamingStrategy, TypeSource]

© coserpatipasauce

TypeSource typeSource
RawGridSource rawGridSource
ThermalSource thermalSource

BminputFactory bminputFactory
ChpinputFactory chpinputFactory.

EvinputFactory evinputFactory

FixedFeedininputFactory fixedFeedininputFactory

HplnputFactory hpinputFactory

LoadinputFactory loadinputFactory

PvInputFactory pvinputFactory

Storagelnputfactory storagelnputFactory.

. GraphicSource

@ weathersource

Optional<GraphicElements> getGraphicElements(
Set<NodeGraphicinput> getNodeGraphicinput()
Set<NodeGraphicinput> getNodeGraphicinput(Set <Nodeinput)
Set=<LineGraphicinput> getLineGraphicinput()
Set<LineGraphicinput> getLineGraphicinput(Set<Lineinput>)

(© csvaraphicsource

O TypeSource typeSource

O RawGridSource rawGridSource
0 LineGraphicinputFactory lineGraphicinputFactory
0 NodeGraphicinputFactory nodeGraphicinputFactory

WeclnputFactory wecinputFactory.

CsvSystemParticipantSource(String, String, FileNamingStrategy. TypeSource, ThermalSource, RawGridSource]

© CsvGraphicSource(String, String, FileNamingStrategy. TypeSource, RawGridSource)

Map<point. IndividualTimeSeries<Weather Value>> getWeather(Closedinterval<ZonedDateTime>)
Map=<point. individualTimeSeries<Westher Value> getWeather (Closedinter val<ZonedDateTime. Collection<Point>)
WeatherValue getWeather(ZonedDateTime date. Point coordinate)

_static/figures/uml/DataSourceClassDiagram_draft.png
MainController

SimulationMode loadSimulationMode|

. InputAccumulator
(©) csveridatasource DBCGridDatasource

‘o InputAccumulator InputAccumulator(SimulationModelConfig)
Future<SimulationModel> importSimulationModel()
© SimulationModel getSimulationModel()

(©) NeodjGridpatasource|

simulationModel

o List<GridData> gridbata

(@ NeoypataConnector

0 neoiDriver driver

@) criavatasource (@ Joscoataconnector

0 DriverManager driverManager

(@) Assetvatasource (@ wholesaleDatasource

(@ weatherDatasource

@ covoatacomectal] @ cerricoatzsouce

(@ Typepatasource
(@) mermaisource

Future <Gridoata fetchGridbatal Future <TypeData> etchypecatal o ey | set<Evioders retcheve0 Future <WholesaleData> FetchWholesaleDatal Future <WeatherData FetchWeatherbatal O o
T e e Sl B W g e O || S e o
s e etk l] e — s B et N | | (el s e

© WholesaleDataSource wholesaleProvider

@ oatacomector

‘DataConnector buldConnector(String fson)
Boolean validateConnection(

AN V L

0 DataConnector connector

_static/figures/uml/InputDataDeployment.png
N N N
projName_model.conf projName_simulation.conf load_parameter

N
O load_profiles wholesale_prices

config_source

inputAccumulator

A
: : o o]

fal_source weather_Source tilme_sefies_source

graphics|_sourcé grid_source assets_source

types_sowrce th

PostgreSQL

assets T
) S _nfiuxoe_
graphics

W

i

N N
wec.csv asset_xyz.csv

_static/figures/uml/InputDatamodelConcept.png
models\

@ uniueeriiy

© UUID FIELD NAME: Strin
O uid: UUD

voltagelevels\

@ GermanvoltageLevelUtils

© LV. CommonVoltageLevel
© MV L0KV: CommonVoltageLevel

timeseries

© MV_20KV: CommonVoltageLevel
© MV_30KV. CommonVoltageLevel
© BVE CommortVolisgeLevel
© EHV 220KV: CommonVoltageLevel

© EFV_330KV. CommonvoltageLevel
O germanvoltageLevels: Set<CommonVoltageLevel>

© parse(ComparableQuantity<ElectricPotential>): CommonVoltageLevel
© parse(String, ComparableQuantity<ElectricPotential>]. CommonVoltageLevel

(© commonvoltagelevel

© synonymousIds: Set<String>.

© voltageRange: RightOpenlnterval<ComparableQuantity<ElectricPotential>>
‘o covers(ComparableQuantity<ElectricPotential>): boolean

© covers(String, ComparableQuantity<ElectricPotential): boolean

< id: string
© nominalVoltage: ComparableQuantity<ElectricPotential [kv]

inputy N

© operatontime

0 startDate: ZonedDateTime
0 endbate: ZonedDateTime
0 isimited: boolean

© notLimited(): OperationTime
o billdert)- operationTimeBiatder

getOperationLimit(): Optional<Closedinterval<ZonedDateTimes>
© includes(ZonedDateTime): boolean

v T 0
\ \ \

graphics system

connector

RandomLoadParameter|

0 quartertour: int
0 kWd: Double

o ksa: Double

0 kSu: Double

0 myd: Double

0 mySa Double

O mySu: Double

O sigmald: Double
O sigmasa: Double
0 sigmasu: Double

(@ ssvettpernnad]

0 VTarget: ComparableQuantity<Dimensionless> (pU]
0 slack: Boolean

0 geoPosition: Point

0 voltLvl: VoltageLevel

0 subnet: int

0 id: String
O operationTime: OperationTime
O operator: Operatorinput

© operatornpur
N GPEATOR ASEIGNED. Opersariat
B

0 node: Nodelnput
0 vMag: Boolean [default f|

0 vAng: Boolean [default f|

0 p: Boolean [default

0 g Boolean [default -

fo.extractor

getOperationTime(): OperationTime
getOperator(): Operatorinput
inOperationOn(ZonedDateTimel: boolean

_static/figures/uml/DefaultResultDirectoryHierarchy.png
<gridname> (.t

results\

[participants\

bm_result.csv
chp_result.csv
ev_result.csv
eves_restilt.csv
fixed_feed_in_resut.csv
hp_résult.csv
load_result.csv
pv_result.csv
storage_result.csv
wec_result.csv

thermal \

[orid\

cylindical_storage_result.csv
thermal_bus_resulf.csv
thermal_house_result.csv

line_result.csv
node_result.csv
switch_result.csv
transformer_2w_result.csv
transformer_3w_result.csv

_static/figures/uml/GraphicDatamodelConcept.png
@ unaueeriy

© UUID FIELD NAME: Strin
O uid: UUD

getOperationTime(): OperationTime
getOperator(): Operatorinput
inOperationon(ZonedbateTime): boolean

(©)uneGraphicinput

e Trees 0 node: Nodelnput

o point: Point

<f. other uml diagram for details <f. other uml diagram for details 0 graphicLayer: String

O path: LineString

_static/figures/uml/OutputDatamodelConcept.png
models

@ uniueeriiy

0 UUID FIELD NAME: Strin:
© tuid: UUID

. Resultentity

© time: ZonedDateTime
© inputModel: UUID

I
'

thermal\

, syslem\
0 0 SystemParticipantResult

© iBAng: ComparableQuantity<Angle>

(@) mermatunitResult

0 aDot. ComparableQuantity<Power> [MW]

=1

. StorageResult

© soc: ComparableQuantity<Dimensionless>

. ThermalStorageResult

0 energy ComparableQuantity<Energy> (MWh]

(©) FixedreedinResult

(©) TransformerswResult

0 iCMag: ComparableQuantity<ElectricCurrent>
© iCAng: ComparableQuantity<Angle>

(© ThermalHouseResut (© cyindricalstorageResult

0 indoorTemperature: ComparableQuantity<Temperature> [*C] o fillLevel: ComparableQuantity<Dimensionless> (%]

(©) TransformerzwResult

_static/figures/uml/SystemDatamodelConcept.png
models\

@ uniueeriiy

© UUID FIELD NAME: Strin
O uid: UUD

result

timeseries

graphics Connector’

© parse(String): StandardLoadProfile

system)

characteristic

0 standardLoadprofile: StandardLoadProfile
0 dsm: Boolean

O sRated: ComparableQuantity<Power> [kvA]

0 eConsannual: ComparableQuantity<Eneray> [kih]
0 cosPhiRated: double

type\

@© veeperput

0 cpCharacteristic: WecCharacteristicinput
O etaConv: ComparableQuantity<Dimensionless> [%]
0 rotorarea: ComparableQuantity<Area [m?]

O hubHeight: ComparableQuantity<Length> [m]

0 lfeCycle: int

0 eStorage: ComparableQuantity<Energy> (Kih]

0 pMax: ComparableQuantity<Power> (kW]

O activePowerGradient: ComparableQuantity<DimensionlessRate> [%/h]
O eta; ComparableQuantity<Dimensionless> [%]

0 dod: ComparableQuantity<Dimensionless> (%]

o lifeTime: ComparableQuantity<Time> [h]

© storasenpenpur

© rerwert

O pThermal: ComparableQuantity<Power> [kW]

0 eStorage: ComparableQuantity<Eneray> [KWh]
O eCons: ComparableQuantity<SpecificEneray> [kWh/km]

© chptypemput

O etakl: ComparableQuantity<Dime
O etaTh: ComparableQuantity<Dime
0 pThermal: ComparableQuantity<F
O pOwn: ComparableQuantity<Pow:

thermal\

(© Thermalausinput

cf_other uml diagram for details

(©) Thermalstorageinput

cf_other uml diagram for details

AV

@ systenpertcpantypetrput

O capex: ComparableQuantity<Currency> [€]

0 opex: ComparableQuantity<EnerayPrice> (€/MWh]
0 sRated: ComparableQuantity<Power> [KVA]

O cosphiRated: Double

@) assetrypermpu]
ik

_static/figures/uml/ModelContainerConcept.png
models.input.container

(©) subGridcontainer

(©) Jointeridcontainer

0 subGridTopologyGraph: SubGridTopologyGraph

' checkSubGridTopologyGraph(l: SubGridTopologyGraph

@ GraphicElements

0 nodeGraphics: Set<NodeGraphicinput>
O lineGraphics: Set<LineGraphicinput>

0 subnet: int
0 predominantVoltageLevel: VoltageLevel

@) cridcontainer

& gridName: String

© rawGrid: RawGridElements
| © systemParticipants: SystemParticipants
- © graphics: GraphicElements

(©) Raweridelements

0 nodes: Set<Nodelnput>.
O lines: Set<Linelnput>

0 transformer2Ws: Set<Transformer2Winput>

O transformer3Ws: Set<Transformer3Winput>

0 switches: Set<Switchinput>

0 measurementUnits: Set<MeasurementUnitinput>

QP

o allEntitiesAsList() List<UniqueEntity>

@ rmpucontainer

o validate(): void

© sysempartcpans

0 bmPlants: Set<Bminput>
0 chpPlants: Set<Chpinput>
0 evCS: Set<Evesinput>

0 evs: Set<Evinput>

0 fixedFeedins: Set<FixedFeedininput>
0 heatPumps: Set<Hpinput>

0 loads: Set<Loadinput>

0 pyPlants: Set<Pvinput>

O storages: Set<Storagelnput>

0 wecPlants: Set<Wecinput>

[oraph\

©Sub6ndTupu\ugyGraph

o link: Transformerinput
0 superiorNode: Nodelnput
0 superiorNode: Nodelnput

<bind»V:SubGridContainer E:SubGridGate
org.jggapht.graph\

(©) AsunmodiiableGraph

_static/figures/uml/TimeSeriesDatamodelConcept.png
[Gmeseries)

© et @ siovonirrone

5 e Sandardioadrotie
5 doyoraeeKToHouryalies: Map<DayOfiiek, Hapeinteger, PUalue>>

 key: Strng
= gets g Soeosrtle

@ sorversiosimone

Weathnas o
e ©

n
S & beroadproties heatbemans ComparabeQuany<Powers (T
< parselsung) Srdlssme

G i SR SV e Vi

e ye— G VA
[@repetrnerimesenes

© wawauammeseres
= pzonadone T, stV GraTovae

 cazonedoateTimer T

@ vearervone

© cooramae: pont
{3 iraainon: wradivonvalue

© timperature. Temperaturevalue
5 i Vinaioe

© reamarvaie © svoue

© hestbemand: ComparabieQuantty<power> 11| | 0@ Comparaslequantty<power> (WA

@ rimeseres
& e et

' Optional<TimeBasediotue=V==> gelTimedosedvaluelZonedDateTime
& Ghonacu seateizonecowTmes

2 SEicES Guenties

S Optonal imeBssestaue<y=> getPrevious TineBasedvaluelZ onedOateTime)
© Optonal<TimeBaseavalue<yaz geiNexT meBasedalueiZonedbateTme)

& Optonal<zanedboteTimes geipreviou DoteTimel)

< Oltional<2 onedbateTimes. GeexSHeTIEl)

[F o Vextends Valie}
(@ rmesaseavane 222

 time: ZonedbmteTime.

© wsarroneeney

5 doyOviekc Dayoiiek|
5 quanterouoTey it

© restvemanavaie © erersyrcevae
e Compet o | |2 e Comprebety sspecorerer [

© Terverstursvaie
= mperears Comparabu <Temperanies €]

lebinc-pvalue

= drecton: ComparabieQuantty<Angie> (1
© veiociy. Comparaeuantiy <specds ms)

o drectrradiaton: Comparablequanty<Iradiaton (W]
5 difusciradtion ComparabieGuanty <iradiatons (CAN’]

i
(@rimesercseny

S v

_static/figures/uml/TestDataHierarchy.png
(@ complextopoions| (@ sysempartipantresons| [@perestoata

_static/figures/uml/ThermalDatamodelConcept.png
models\

@ uniueeriiy

© UUID FIELD NAME: Strin
O uid: UUD

N mermal\

[connector’

\
graphics

system

’ L
limeseriesf valuef resullf

@© orerstionine

cf_other uml diagram for details

.Therma\Eus\npm

0 id: String
O operationTime: OperationTime
O operator: Operatorinput

© operatornmur

0 name: string

© NO_OPERATOR ASSIGNED: Operatorinput

. CylindricalStoragelnput

0 storageVolumeLvl: ComparableQuantity<Volume> (m’]

O storageVolumeLviMin: ComparableQuantity<Volume> [m’]
O inletTemp: ComparableQuantity<Temperature> [*C]

O returnTemp: ComparableQuantity<Temperature> [*C]

< ComparableQuantity<SpecificHeatCapacity> [KWH/(Kkrm]]

. ThermalStorageinput

. ThermalUnitinput

o thermalBus: ThermalBusinput [~ = = = - —

. ThermalHouselnput

0 ethCapa: ComparableQuantity<HeatCapacity (KWh/K]
O ethlosses: ComparableQuantity<ThermalConductance> (kW/K]

. ThermalSinkinput

AN

getOperationTime(): OperationTime
getOperator(): Operatorinput
inOperationOn(ZonedDateTimel: boolean

fo.extractor

@ rostine

@ remre

© getType(): AssetTypelnput

AN
=]

@ Hesthermaistorage

© getThermalStorage(): ThermalStoragelnput

/5
Nz

. NestedEntity|

2

@ Hesmhermalsus

© getThermalBus(): ThermalBusinput

@) Hesodes
© aliNodes(): List<Nodeinput>

_images/ecdTransformer3w.png
rScB, xScB

nodeA ©

O nodeB
rScA, xScA rScC, xScC
4 ——o0 nodeC
gM, bM D
. 2 O O

_images/qv.png
1.0

q
v
£

0.5

0.0

Reactive power

-10

0.90

0.95

1.00

105 pu. 110
Nodal voltage magnitude v —

_images/DefaultResultDirectoryHierarchy.png
<gridname> (.t

results\

[participants\

bm_result.csv
chp_result.csv
ev_result.csv
eves_restilt.csv
fixed_feed_in_resut.csv
hp_résult.csv
load_result.csv
pv_result.csv
storage_result.csv
wec_result.csv

thermal \

[orid\

cylindical_storage_result.csv
thermal_bus_resulf.csv
thermal_house_result.csv

line_result.csv
node_result.csv
switch_result.csv
transformer_2w_result.csv
transformer_3w_result.csv

_images/cosPhiP.png
1

0.6 08 pau.
Active power p —

0.4

0.2

S B3
= ! =1
] S

0.95

— dhsoo 103085 1om0g

_images/transformerWithSwitchGear.png
%‘ L L L @ L

F A B C D E

110KV 110kV 110kV 110kV 10kV
1 2 2 2 2

_images/DataSourceClassDiagram.png
@ npesaurce

Set<Transformer2WTypelnput> getTransformer2WTypes(
Set<TransformersWTypelnput> getTransformer3WTypes()
Set<Operatorinput> getOperators)

Set<LineTypeinput> getLineTypes)

Set<BmTypelnput> getBmTypes(

Set<ChpTypeinput> getChpTypes)

Set<HpTypeinput> getHpTypes)

Set<StorageTypeinput> getstorageTypes)
Set<WecTypeinput> getWecTypes()

Set<EvTypelnput> getevTypes(

'

@ mermaisource

@ Raweridsource

Optional<AawGridElements> getGridDatal

‘Set<ThermalBusinput> getThermalBuses(

Set<ThermalBusinput> getThermalBuses(Set<Operatorinput>)

Set<Thermalstorageinput> getThermalStorages()

Set<ThermalStorageinput> getThermalStorages(Set<Operatorinput>, Set<ThermalBusinput>)
Set<ThermalHouselnput> get ThermalHouses()

Set<ThermalHouselnput> getThermalHouses(Set<Operatorinput operators, Set<ThermalBusinput>)
Set<CylindricalStorageinput> getCylindricStorages()

Set<CylindricalStoragelnput> getCylindricStorages(Set<Operatorinput>, Set<ThermalBusinput>)

© compesouce

(© csvihermalsource

'O OperatorinputFactory operatorinputFactory

0 LineTypelnputFactory lineTypelnputFactory

0 Transformer2WTypelnputFactory transformer2WTypelnputFactory

0 Transformer3WTypelnputFactory transformer3WTypelnputFactory
O SystemParticipantTypelnputFactory systemParticipantTypelnputFactory

O TypeSource typeSource
0 ThermalBusinputFactory thermalBusinputFactory

o CylindricalStorageinputFactory cylindricalStoragelnputFactory
0 ThermalHouselnputFactory thermalHouselnputFactory

‘o CsvTypeSource(String, String, FilsNamingStrategy

© CsvThermalSourcel(String. String. FileNamingStrategy. TypeSource]

Set<Nodeinput> getNodes()
Set<Nodeinput> getNodes(Set<Operatorinput>)
Set<Lineinput> gettines()

@ covarasource

o String csvSep
© CsvFileConnector connector

Set<Lineinput> getLines(Set<Nodelnput>. Set<LineTypelnput>, Set<Operatorinput>)
Set<Transformer2Winput> get2WTransformers()

© CsvbataSource(String, String, FileNamingStrategy)

Set<Transformer3Winput> get3Wransformers()

Set<Switchinput> getSwitches()
Set<Switchinput> getSwitches(Set<Nodeinput>. Set<Operatorinput>)
Set<MeasurementUnitinput> getMeasurementUnits()

Set<MeasurementUnitinput> getMeasurementUnits(Set<Nodeinput>, Set<Operatorinput>)

Set<Transformer2Winput> get2WTransformers(Set<Nodeinput>, Set<Transformer2WTypeinput>, Set<Operatorinput>)

Set<Transformer3Winput> get3WTransformers(Set<Nodeinput>, Set<Transformer3WTypeinput>, Set<Operatorinput>)

@ srenpertpantssource

Optional<Systemparticipants> getsystemParticipants()

Set<Bminput> getBmPlants()

Set<Bminput> getBmPlants(Set<Nodeinput>, Set<Operatorinput>, Set<BmTypeinput>)
Set<Chpinput> getChpPlants()

Set<Chpinput> getChpPlants(Set<Nodeinput>, Set<Operatorinput>, Set<ChpTypelnput>. Set<ThermalBusinput>, Set<ThermalStorageinput>)
Set<Evinput> getevs()

Set<Evinput> getvs(Set<Nodeinput>, Set<Operatorinput>. Set<EvTypelnput>)

Set<Evesinput> getEves()

Set<Evcsinput> getEvCS(Set<Nodeinput>, Set<Operatorinput>)

Set<FixedFeedininput> getFixedFeedins()

Set<FixedFeedininput> getFixedFeedins(Set <Nodelnput>, Set<Operatorinput>)

Set<Hpinput> gettieatPumps(

Set<Hpinput> getHeatPumpsinodes, Set<Operatorinput. Set<HpTypeinput, Set<ThermalBusinput>)

Set<Loadinput> getLoads()

Set<Loadinput> getLoads(Set<Nodelnput>, Set<Operatorinput>)

Set<pvinput> getPvPlants()

Set<Pvinput> getpvplants(Set<Nodeinput>, Set<Operatorinput>)

Set<Storageinput> getstorages()

Set<Storageinput> getStorages(Set<Nodelnput>, Set<Operatorinput>, Set<StorageTypeinput>)

Set<Wecinput> getWecPlants()

Set<Wecinput> getWecPlants(Set<Nodelnput>, Set<Operatorinput>, Set<WecTypeinput>)

(© csvrawsridsource

TypeSource typeSource
NodelnputFactory nodelnputFactory

LinelnputFactory linelnputFactory
Transformer2WinputFactory transformer2WinputFactory
Transformer3WinputFactory transformer3WinputFactory
SwitchinputFactory switchinputFactory
MeasurementUnitinputFactory measurementUnitinputFactory

o[ooooooo

CsvRawGridSource(String, String, FleNamingStrategy, TypeSource]

© coserpatipasauce

TypeSource typeSource
RawGridSource rawGridSource
ThermalSource thermalSource

BminputFactory bminputFactory
ChpinputFactory chpinputFactory.

EvinputFactory evinputFactory

FixedFeedininputFactory fixedFeedininputFactory

HplnputFactory hpinputFactory

LoadinputFactory loadinputFactory

PvInputFactory pvinputFactory

Storagelnputfactory storagelnputFactory.

. GraphicSource

@ weathersource

Optional<GraphicElements> getGraphicElements(
Set<NodeGraphicinput> getNodeGraphicinput()
Set<NodeGraphicinput> getNodeGraphicinput(Set <Nodeinput)
Set=<LineGraphicinput> getLineGraphicinput()
Set<LineGraphicinput> getLineGraphicinput(Set<Lineinput>)

(© csvaraphicsource

O TypeSource typeSource

O RawGridSource rawGridSource
0 LineGraphicinputFactory lineGraphicinputFactory
0 NodeGraphicinputFactory nodeGraphicinputFactory

WeclnputFactory wecinputFactory.

CsvSystemParticipantSource(String, String, FileNamingStrategy. TypeSource, ThermalSource, RawGridSource]

© CsvGraphicSource(String, String, FileNamingStrategy. TypeSource, RawGridSource)

Map<point. IndividualTimeSeries<Weather Value>> getWeather(Closedinterval<ZonedDateTime>)
Map=<point. individualTimeSeries<Westher Value> getWeather (Closedinter val<ZonedDateTime. Collection<Point>)
WeatherValue getWeather(ZonedDateTime date. Point coordinate)

_images/DefaultInputDirectoryHierarchy.png
<gridnames (.tar.gz)\

input

part

bm_input.csv
chp_input.csv
ev_input.csv
evCs_inpuit.csv
fixed_feed_in_input.csv
hp_input.csv
load_input.csv
pv_input.csv
storage_input.csv
wec_input.csv

me_series\

its_<uuido> csv
its_<uidn> csv
1t5_<Uuido> csv.

1ts_<uuidn>.csv

participant_to_time_series.csv

thermal \

cylindrical_storage_input.csv
thermal_bus_input.csv
thermal_house_input.csv

graphics

line_graphic_input.csv
node_graphic_input.csv

grid\

line_input.csv
measurement_unit_input.csv
node_input.csv
switch_input.csv
transformer_2w_input.csv
transformer_3w_input.csv

global\

bm_type.csv
chp_type.csv
ev_fype.csv

hp_type.csv

line_type csv
operator_input.csv
storage_type.csv
transformer_2w_type.csv
transformer_3w type.csv
wec_type.csv
wec_characteristic_input.csv

