
PowerSystemDataModel
Release 1.0.1-SNAPSHOT

Jul 09, 2021

Contents:

1 Getting started 3
1.1 Requirements . 3
1.2 Where to get . 3

2 Available models 5
2.1 Input . 6
2.2 Result . 30
2.3 Time Series . 40
2.4 Validation Utils . 41

3 I/O 45
3.1 InfluxDB . 45
3.2 csv files . 46

4 Contact the (Main) Maintainers 53

5 Indices and tables 55

Bibliography 57

i

ii

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Welcome to the documentation of the PowerSystemDataModel. It provides an extensive data model capable of mod-
elling energy systems with high granularity e.g. for bottom-up simulations. Additionally, useful functions to process,
augment and furnish model i/o information is provided. Effective handling of geographic information related to power
grids is also possible.

Contents: 1

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

2 Contents:

CHAPTER 1

Getting started

Welcome, dear fellow of bottom up power system modelling! This section is meant to give you some help getting
hands on our project. If you feel, something is missing, please contact us!

1.1 Requirements

Java > v 1.8

1.2 Where to get

Checkout latest from GitHub or use maven for dependency management:

1.2.1 Stable releases

On Maven central:

<dependency>
<groupId>com.github.ie3-institute</groupId>
<artifactId>PowerSystemDataModel</artifactId>
<version>1.1.0</version>

</dependency>

1.2.2 Snapshot releases

Available on OSS Sonatype. Add the correct repository:

3

https://github.com/ie3-institute/PowerSystemDataModel
https://search.maven.org/artifact/com.github.ie3-institute/PowerSystemDataModel
https://oss.sonatype.org/

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

<repositories>
<repository>http://oss.sonatype.org/content/repositories/snapshots</repository>

</repositories>

and add the dependency:

<dependency>
<groupId>com.github.ie3-institute</groupId>
<artifactId>PowerSystemDataModel</artifactId>
<version>2.0-SNAPSHOT</version>

</dependency>

4 Chapter 1. Getting started

CHAPTER 2

Available models

This page gives an overview about all available models in PowerSystemDataModel. They are basically grouped into
three groups:

1. Input models may be used to describe input data for a power system simulation

2. Result models denote results of such a simulation

3. Time Series may serve both as input or output

All those models are designed with some assumptions and goals in mind. To assist you in applying them as intended,
we will give you some general remarks:

Uniqueness All models have a uuid field as universal unique identifier. There shouldn’t be any two elements with
the same uuid in your grid data set, better in your whole collection of data sets.

Immutability We designed the models in a way, that does not allow for adaptions of the represented data after
instantiation of the objects. Thereby you can be sure, that your models are thread-safe and no unwanted or
unobserved changes are made.

Copyable With the general design principle of immutability, entity modifications (e.g. updates of field values) can
become hard and annoying. To avoid generating methods to update each field value, we provide an adapted
version of the builder pattern to make entity modifications as easy as possible. Each entity holds it’s own copy
builder class, which follows the same inheritance as the entity class itself. With a call of .copy() on an entity
instance a builder instance is returned, that allows for modification of fields and can be terminated with .build()
which will return an instance of the entity with modified field values as required. For the moment, this pattern is
only implemented for a small amount of AssetInput entities (all entities held by a GridContainer except thermal
units to be precise), but we plan to extend this capability to all input entities in the future.

Single Point of Truth Throughout all models you can be sure, that no information is given twice, reducing the possi-
bility to have ambiguous information in your simulation set up. “Missing” information can be received through
the grids relational information - e.g. if you intend to model a wind energy converter in detail, you may find
information of it’s geographical location in the model of it’s common coupling point (node).

Harmonized Units System As our models are representations of physical elements, we introduced a harmonized
system of units. The standard units, the models are served with, is given on each element’s page. Thereby
you can be sure, that all information are treated the same. As most (database) sources do not support physical

5

https://en.wikipedia.org/wiki/Builder_pattern/

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

units, make sure, you have your input data transferred to correct units before. Same applies for interpreting the
obtained results. In all models physical values are transferred to standard units on instantiation.

Equality Checks To represent quantities in the models within an acceptable accuracy, the JSR 385 reference imple-
mentation Indriya is used. Comparing quantity objects or objects holding quantity instances is not as trivial as
it might seem, because there might be different understandings about the equality of quantities (e.g. there is a
big difference between two instances being equal or equivalent). After long discussions how to treat quantities
in the entity equals() method, we agreed on the following rules to be applied:

• equality check is done by calling Objects.equals(<QuantityInstanceA>,
<QuantityInstanceB>) or <QuantityInstanceA>.equals(<QuantityInstanceB>).
Using Objects.equals(<QuantityInstanceA>, <QuantityInstanceB>) is necessary
especially for time series data. As in contrast to all other places, quantity time series from real world
data sometimes are not complete and hence contain missing values. To represent missing values this is
the only place where the usage of null is a valid choice and hence needs to be treated accordingly.
Please remember that his is only allowed in very few places and you should try to avoid using null for
quantities or any other constructor parameter whenever possible!

• equality is given if, and only if, the quantities value object and unit are exactly equal. Value objects
can become e.g. BigDecimal or Double instances. It is important, that the object type is also the
same, otherwise the entities equals() method returns false. This behavior is in sync with the equals
implementation of the indriya library. Hence, you should ensure that your code always pass in the same
kind of a quantity instance with the same underlying number format and type. For this purpose you should
especially be aware of the unit conversion method AbstractQuantity.to(Quantity) which may
return seemingly unexpected types, e.g. if called on a quantity with a double typed value, it may return
a quantity with a value of either Double type or BigDecimal type.

• for now, there is no default way to compare entities in a ‘number equality’ way provided. E.g. a line
with a length of 1km compared to a line with a length of 1000m is actually of the same length, but calling
LineA.equals(LineB) would return false as the equality check does NOT convert units. If you
want to compare two entity instances based on their equivalence you have (for now) check for each quantity
manually using their isEquivalentTo() method. If you think you would benefit from a standard
method that allows entity equivalence check, please consider handing in an issue here. Furthermore, the
current existing implementation of isEquivalentTo() in indriya does not allow the provision of a
tolerance threshold that might be necessary when comparing values from floating point operations. We
consider providing such a method in our PowerSystemUtils library. If you think you would benefit from
such a method, please consider handing in an issue here.

2.1 Input

Model classes you can use to describe a data set as input to power system simulations.

2.1.1 Operator

This is a simple identifier object, representing a natural or legal person that is the owner or responsible person having
control over one or more physical entitites.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier

6 Chapter 2. Available models

https://github.com/unitsofmeasurement/indriya
https://github.com/ie3-institute/PowerSystemDataModel/issues
https://github.com/ie3-institute/PowerSystemUtils
https://github.com/ie3-institute/PowerSystemUtils/issues

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Application example

1 OperatorInput profBroccoli = new OperatorInput(
2 UUID.fromString("f15105c4-a2de-4ab8-a621-4bc98e372d92"),
3 "Univ.-Prof. Dr. rer. hort. Klaus-Dieter Brokkoli"
4)

Caveats

Nothing - at least not known. If you found something, please contact us!

2.1.2 Grid Related Models

Node

Representation of an electrical node, with no further distinction into bus bar, auxiliary node or others.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
vTarget p.u. Target voltage magnitude to be used

by voltage regulation entities
slack –

Boolean indicator, if this nodes
serves as a slack node in power
flow calculation

geoPosition – Geographical location
voltLvl – Information of the voltage level (id

and nominal voltage)
subnet – Sub grid number

Caveats

System participants, that need to have geographical locations, inherit the position from the node. If the overall location
does not play a big role, you are able to use the default location with NodeInput#DEFAULT_GEO_POSITION
being located on TU Dortmund university’s campus (See on OpenStreetMaps).

Schematic Node Graphic

Schematic drawing information for a node model.

2.1. Input 7

https://www.openstreetmap.org/search?query=51.4843281%2C%207.4116482#map=15/51.4843/7.4117

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
graphicLayer –

Human readable identifier of the
graphic layer to draw
this element on

path – Line string of coordinates describ-
ing the drawing, e.g. for bus bars

point – Alternative to line string, only draw-
ing a point coordinate

node – Reference to the physical node
model

Caveats

Nothing - at least not known. If you found something, please contact us!

Line

Representation of an AC line.

Attributes, Units and Remarks

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
r Ω / km Phase resistance per length
x Ω / km Phase reactance per length
g µS / km Phase-to-ground conductance per length
b µS / km Phase-to-ground susceptance per length
iMax A Maximum permissible current
vRated kV Rated voltage

8 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
nodeA –
nodeB –
parallelDevices – Amount of parallel devices of same

attributes
type –
length km
geoPosition –

Line string of geographical
locations describing the
position of the line

olmCharacteristic –

Characteristic of possible overhead
line monitoring
Can be given in the form of
olm:{<List of Pairs>}.
The pairs are wind velocity in x and
permissible
loading in y.

Caveats

Nothing - at least not known. If you found something, please contact us!

Schematic Line Graphic

Schematic drawing information for a line model.

2.1. Input 9

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
graphicLayer –

Human readable identifier of the
graphic layer to draw
this element on

path – Line string of coordinates describ-
ing the drawing

line – Reference to the physical line model

Caveats

Nothing - at least not known. If you found something, please contact us!

Switch

Model of an ideal switch connecting two node models of the same voltage level

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
nodeA –
nodeB –
closed – true, if the switch is closed

Caveats

Nothing - at least not known. If you found something, please contact us!

Two Winding Transformer

Model of a two winding transformer. It is assumed, that node A is the node with higher voltage.

Attributes, Units and Remarks

10 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Type Model

All impedances and admittances are given with respect to the higher voltage side. As obvious, the parameter can be
used in T- as in -equivalent circuit representations.

Attribute Unit Remarks
uuid
id Human readable identifier
rSc Ω Short circuit resistance
xSc Ω Short circuit impedance
gM nS No load conductance
bM nS No load susceptance
sRated kVA Rated apparent power
vRatedA kV Rated voltage at higher voltage terminal
vRatedB kV Rated voltage at lower voltage terminal
dV % Voltage magnitude increase per tap position
dPhi ° Voltage angle increase per tap position
tapSide true, if tap changer is installed on lower voltage side
tapNeutr Neutral tap position
tapMin Minimum tap position
tapMax Maximum tap position

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
nodeA – Higher voltage node
nodeB – Lower voltage node
parallelDevices – Amount of parallel devices of same attributes
type –
tapPos – Current position of the tap changer
autoTap – true, if there is a tap regulation apparent and active

Caveats

Nothing - at least not known. If you found something, please contact us!

Three Winding Transformer

Model of a three winding transformer. It is assumed, that node A is the node with highest, node B with intermediate
and node C with lowest voltage.

The assumed mathematical model is inspired by ABB Schaltanlagenhanbuch [Gremmel1999], but with the addition of
a central phase-to-ground admittance, cf. following picture.

2.1. Input 11

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Fig. 1: “Star like” T-equivalent circuit diagram of a three winding transformer

Attributes, Units and Remarks

Type Model

All impedances and admittances are given with respect to the higher voltage side.

Attribute Unit Remarks
uuid
id Human readable identifier
rScA Ω Short circuit resistance in branch A
rScB Ω Short circuit resistance in branch B
rScC Ω Short circuit resistance in branch C
xScA Ω Short circuit impedance in branch A
xScB Ω Short circuit impedance in branch B
xScC Ω Short circuit impedance in branch C
gM nS No load conductance
bM nS No load susceptance
sRatedA kVA Rated apparent power of branch A
sRatedB kVA Rated apparent power of branch B
sRatedC kVA Rated apparent power of branch C
vRatedA kV Rated voltage at higher node A
vRatedB kV Rated voltage at higher node B
vRatedC kV Rated voltage at higher node C
dV % Voltage magnitude increase per tap position
dPhi ° Voltage angle increase per tap position
tapNeutr Neutral tap position
tapMin Minimum tap position
tapMax Maximum tap position

12 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
nodeA – Higher voltage node
nodeB – Intermediate voltage node
nodeC – Lowest voltage node
parallelDevices – Amount of parallel devices of same attributes
type –
tapPos – Current position of the tap changer
autoTap – true, if there is a tap regulation apparent and active

Caveats

Nothing - at least not known. If you found something, please contact us!

Measurement Unit

Representation of a measurement unit placed at a node. It can be used to mark restrictive access to simulation results
to e.g. control algorithms. The measured information are indicated by boolean fields.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
vMag – Voltage magnitude measurements are available
vAng – Voltage angle measurements are available
p – Active power measurements are available
q – Reactive power measurements are available

Caveats

Nothing - at least not known. If you found something, please contact us!

Grid Container

The grid container groups all entities that are able to form a full grid model. Two types of grid containers are available:

2.1. Input 13

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

JointGridContainer This one is able to hold a grid model spanning several voltage levels. On instantiation, a sub
grid topology graph is built. This graph holds SubGridContainers as vertices and transformer models as
edges. Thereby, you are able to discover the topology of galvanically separated sub grids and access those sub
models directly.

and

SubGridContainer This one is meant to hold all models, that form a galvanically separated sub grid. In contrast to the
JointGridContainer it only covers one voltage level and therefore has an additional field for the predomi-
nant voltage level apparent in the container. Why predominant? As of convention, the SubGridContainers
hold also reference to the transformers leading to higher sub grids and their higher voltage coupling point.

Let’s shed a more detailed light on the boundaries of a sub grid as of our definition. This especially is important,
if the switchgear of the transformer is modeled in detail. We defined, that all nodes in upstream direction of the
transformer, that are connected by switches only (therefore are within the switchgear) are counted towards the
inferior sub grid structure (here “2”), although they belong to a different voltage level. This decision is taken,
because we assume, that the interest to operate on the given switchgear will most likely be placed in the inferior
grid structure.

The “real” coupling node A is not comprised in the sub grids node collection, but obviously has reference
through the switch between nodes A and B.

A synoptic overview of both classes’ attributes is given here:

Attributes, Units and Remarks

Attribute Unit Remarks
gridName – Human readable identifier
rawGrid – see below
systemParticipants – see below
graphics – see below
subGridTopologyGraph – topology of sub grids - only JointGridContainer
predominantVoltageLevel – main voltage level - only SubGridContainer
subnet – sub grid number - only SubGridContainer

RawGridElements

This sub container simply holds:

• nodes

• lines

14 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

• switches

• two winding transformers

• three winding transformers

• measurement units

SystemParticipants

This sub container simply holds:

• biomass plants

• combined heat and power plants

• electric vehicles

• electric vehicle charging stations

• fixed feed in facilities

• heat pumps

• loads

• photovoltaic power plants

• electrical energy storages

• wind energy converters

and the needed nested thermal models.

Graphics

This sub container simply holds:

• schematic node graphics

• schematic line graphics

Caveats

Nothing - at least not known. If you found something, please contact us!

2.1.3 Participant Related Models

General Remarks on Participant Models

Reactive Power Characteristics

Reactive power characteristics are designed to describe reactive power control behaviour of the models. In Germany,
system operators can require system participants to follow certain characteristics specified in the operators technical
requirements and individually selected per connected asset.

Currently three different characteristics are implemented:

2.1. Input 15

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Fixed Power Factor

Active and reactive power are coupled by a time-independent power factor. It can be parsed from
cosPhiFixed:{(0.0, 0.95)} (exemplary).

Active Power Dependent Power Factor

The power factor is determined based on the current active power feed in or consumption. The characteristic in the
figure below would be described by the three coordinates (0.0, 1.0), (0.9,1.0) and (1.0, 0.95). Alternatively it can be
parsed from cosPhiP:{(0.0, 1.0),(0.9,1.0),(1.0, 0.95)}.

Fig. 2: Exemplary active power dependent power factor

Reactive Power as Function of Nodal Voltage Magnitude

The reactive power is directly derived in accordance to the nodal voltage magnitude. The characteristic in the figure
below would be described by the three coordinates (0.92, -1), (0.97, 0.0), (1.03, 0.0) and (1.08, 1.0). Alternatively it
can be parsed from qV:{(0.92, -1),(0.97, 0.0),(1.03, 0.0),(1.08, 1.0)}.

Biomass plant

Model of a biomass power plant.

Attributes, Units and Remarks

16 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Fig. 3: Exemplary reactive power as function of nodal voltage magnitude

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
capex C Capital expenditure to purchase one

entity of this type
opex C / MWh

Operational expenditure to operate
one entity of
this type

activePowerGradient % / h Maximum permissible rate of
change of power

sRated kVA Rated apparent power
cosphiRated – Rated power factor
etaConv % Efficiency of the assets inverter

2.1. Input 17

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to

follow
type –
marketReaction –

Whether to adapt output based on
(volatile)
market price or not

costControlled –

Whether to adapt output based on
the difference
between production costs and fixed
feed in tariff or not

feedInTariff C / MWh Fixed feed in tariff

Caveats

Nothing - at least not known. If you found something, please contact us!

Combined Heat and Power Plant

Combined heat and power plant.

Attributes, Units and Remarks

18 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
capex C Capital expenditure to purchase one

entity of this type
opex C / MWh

Operational expenditure to operate
one entity of
this type

etaEl % Efficiency of the electrical inverter
etaThermal % Thermal efficiency of the system
sRated kVA Rated apparent power
cosphiRated – Rated power factor
pThermal kW Rated thermal power (at rated elec-

trical power)
pOwn kW Needed self-consumption

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
thermalBus – Connection point to the thermal sys-

tem
qCharacteristics – Reactive power characteristic to

follow
type –
thermalStorage – Reference to thermal storage
marketReaction –

Whether to adapt output based on
(volatile)
market price or not

Caveats

Nothing - at least not known. If you found something, please contact us!

Electric Vehicle

Model of an electric vehicle, that is occasionally connected to the grid via an electric vehicle charging system.

2.1. Input 19

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
capex C Capital expenditure to purchase one

entity of this type
opex C / MWh

Operational expenditure to operate
one entity of
this type

eStorage kWh Available battery capacity
eCons kWh / km Energy consumption per driven

kilometre
sRated kVA Rated apparent power
cosphiRated – Rated power factor

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
type –

Caveats

The node attribute only marks the vehicles home connection point. The actual connection to the grid is always given
through EvcsInput’s relation.

Electric Vehicle Charging Station

Model of a charging station for electric vehicles. This model only covers the basic characteristics of a charging station
and has some limitations outlined below.

Model Definition

20 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to follow
type – Charging point type (valid for all installed points)
chargingPoints – no of installed charging points @ the specific station
cosPhiRated – Rated power factor

Type Model

In contrast to other models, electric vehicle charging station types are not configured via separate type file or table, but
‘inline’ of a charging station entry. This is justified by the fact, that the station type (in contrast to e.g. the type of a
wind energy converter) only consists of a few, more or less standardized parameters, that are (most of the time) equal
for all manufacturers. Hence, to simplify the type model handling, types are provided either by a string literal of their
id or by providing a custom one. See Charging point types for details of on available standard types and how to use
custom types.

The actual model definition for charging point types looks as follows:

Attribute Unit Remarks
id – Human readable identifier
sRated kVA Rated apparent power
electricCurrentType – Electric current type
synonymousIds – Set of alternative human readable identifiers

Charging Point Types

Available Standard Types

To simplify the application of electric vehicle charging stations, some common standard types are available out-of-the-
box. They can either by used code wise or directly from database or file input by referencing their id or one of their
synonymous ids. All standard types can be found in edu.ie3.datamodel.models.input.system.type.
chargingpoint.ChargingPointTypeUtils.

2.1. Input 21

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

id synonymous ids sRated in
kVA

electric current
type

HouseholdSocket household, hhs, schuko-simple 2.3 AC
BlueHouseholdSocket bluehousehold, bhs, schuko-camping 3.6 AC
Cee16ASocket cee16 11 AC
Cee32ASocket cee32 22 AC
Cee63ASocket cee63 43 AC
ChargingStationType1 cst1, stationtype1, cstype1 7.2 AC
ChargingStationType2 cst2, stationtype2, cstype2 43 AC
ChargingStationCcsCombo-
Type1

csccs1, csccscombo1 11 DC

ChargingStationCcsCombo-
Type2

csccs2, csccscombo2 50 DC

TeslaSuperChargerV1 tesla1, teslav1, supercharger1, super-
charger

135 DC

TeslaSuperChargerV2 tesla2, teslav2, supercharger2 150 DC
TeslaSuperChargerV3 tesla3, teslav3, supercharger3 250 DC

Custom Types

While the provided standard types should be suitable for most scenarios, providing an individual type for a specific
scenario might be necessary. To do so, a custom type can be provided instead of a common id. This custom type
is tested against the following regex (\w+\d*)\s*\(\s*(\d+\.?\d+)\s*\|\s*(AC|DC)\s*\), or more
generally, the custom type string has to be in the following syntax:

<Name>(<Apparent Power in kVA>|<AC|DC>) e.g. FastCharger(50|DC) or SlowCharger(2.5|AC)

Please note, that in accordance with edu.ie3.datamodel.models.StandardUnits the apparent power is
expected to be in kVA!

Limitations

• the available charging types are currently limited to only some common standard charging point types and not
configurable via a type file or table. Nevertheless, providing custom types is possible using the syntax explained
above. If there is additional need for a more granular type configuration via type file please contact us.

• each charging station can hold one or more charging points. If more than one charging point is available all
attributes (e.g. sRated or connectionType) are considered to be equal for all connection points

Caveats

Nothing - at least not known. If you found something, please contact us!

Fixed Feed In Facility

Model of a facility, that provides constant power feed in, as no further information about the actual behaviour of the
model can be derived.

22 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to follow
sRated kVA Rated apparent power
cosphiRated – Rated power factor

Caveats

Nothing - at least not known. If you found something, please contact us!

Heat Pump

Model of a heat pump.

Attributes, Units and Remarks

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
capex C Capital expenditure to purchase one

entity of this type
opex C / MWh

Operational expenditure to operate
one entity of
this type

sRated kVA Rated apparent power
cosphiRated – Rated power factor
pThermal kW Rated thermal power (at rated elec-

trical power)

2.1. Input 23

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
thermalBus – Connection point to the thermal system
qCharacteristics – Reactive power characteristic to follow
type –

Caveats

Nothing - at least not known. If you found something, please contact us!

Load

Model of (mainly) domestic loads.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to follow
standardLoadProfile – Standard load profile as model behaviour
dsm – Whether the load is able to follow demand side management signals
eConsAnnual kWh Annual energy consumption
sRated kVA Rated apparent power
cosphiRated – Rated power factor

Caveats

Nothing - at least not known. If you found something, please contact us!

Standard Load Profiles

The StandardLoadProfile is an interface, that forces it’s implementing classes to have a String key and being
able to parse a String to an StandardLoadProfile. Its only purpose is to give note, which standard load
profile has to be used by the simulation. The actual profile has to be provided by the simulation itself. If no matching
standard load profile is known, StandardLoadProfile#NO_STANDARD_LOAD_PROFILE can be used.

24 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

To assist the user in marking the desired load profile, the enum BdewLoadProfile provides a collection of com-
monly known German standard electricity load profiles, defined by the bdew (Bundesverband der Energie- und Wasser-
wirtschaft; engl. Federal Association of the Energy and Water Industry). For more details see the corresponding
website (German only).

Photovoltaic Power Plant

Detailed model of a photovoltaic power plant.

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to

follow
albedo – Albedo of the plant’s surrounding
azimuth °

Inclination in a compass direction
South = 0°, West = 90°, East = -90°

etaConv % Efficiency of the assets inverter
height ° Tilted inclination from horizontal

[0°, 90°]
kG – Generator correction factor merging

technical influences
kT – Temperature correction factor merg-

ing thermal influences
marketReaction –

Whether to adapt output based on
(volatile)
market price or not

sRated kVA Rated apparent power
cosphiRated – Rated power factor

Caveats

Nothing - at least not known. If you found something, please contact us!

Electrical Energy Storage

Model of an ideal electrical battery energy storage.

Attributes, Units and Remarks

2.1. Input 25

https://www.bdew.de/energie/standardlastprofile-strom/
https://www.bdew.de/energie/standardlastprofile-strom/
https://en.wikipedia.org/wiki/Albedo

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
capex C Capital expenditure to purchase one

entity of this type
opex C / MWh

Operational expenditure to operate
one entity of
this type

eStorage kWh Battery capacity
sRated kVA Rated apparent power
cosphiRated – Rated power factor
pMax kW

Maximum permissible active power
infeed or consumption

activePowerGradient % / h Maximum permissible rate of
change of power

eta % Efficiency of the electrical inverter
dod %

Maximum permissible depth of
discharge. 80 % dod
is equivalent to a state of charge of
20 %.

lifeTime h Permissible hours of full use
lifeCycle – Permissible amount of full cycles

26 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to

follow
type –
behaviour –

Foreseen operation strategy of the
storage.
Eligible input: “market”, “grid”,
“self”

Caveats

The field behaviour will be removed in version 1.x, as this is an information, that is only important to a smaller sub
set of simulation applications.

Wind Energy Converter

Model of a wind energy converter.

Attributes, Units and Remarks

2.1. Input 27

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Type Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
capex C Capital expenditure to purchase one

entity of this type
opex C / MWh

Operational expenditure to operate
one entity of
this type

sRated kVA Rated apparent power
cosphiRated – Rated power factor
cpCharacteristic – Wind velocity dependent Betz fac-

tors.
etaConv % Efficiency of the assets inverter
rotorArea m2 Area the rotor covers
hubHeight m Height of the rotor hub

Entity Model

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
node –
qCharacteristics – Reactive power characteristic to

follow
type –
marketReaction –

Whether to adapt output based on
(volatile)
market price or not

Caveats

Nothing - at least not known. If you found something, please contact us!

Betz Characteristic

A collection of wind velocity to Betz factor pairs to be applied in Betz’s law to determine the wind energy coming
onto the rotor area.

28 Chapter 2. Available models

https://en.wikipedia.org/wiki/Betz's_law

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Thermal Bus

A coupling point to thermal system - equivalent to electrical node.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
bus – Connection point to the thermal system

Caveats

Nothing - at least not known. If you found something, please contact us!

Thermal House Model

Model for the thermal behaviour of a building. This reflects a simple shoe box with transmission losses

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
ethLosses kW / K Thermal losses
ethCapa kWh / K Thermal capacity

Caveats

Nothing - at least not known. If you found something, please contact us!

Cylindrical Thermal Storage

Model of a cylindrical thermal storage using a fluent to store thermal energy.

2.1. Input 29

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid –
id – Human readable identifier
operator –
operationTime – Timely restriction of operation
thermalBus – Connection point to the thermal system
storageVolumeLvl m3 Overall available storage volume
storageVolumeLvlMin m3 Minimum permissible storage volume
inletTemp °C Temperature of the inlet
returnTemp °C Temperature of the outlet
c kWh / (K · m3) Specific heat capacity of the storage medium

Caveats

Nothing - at least not known. If you found something, please contact us!

2.2 Result

Model classes you can use to describe the outcome of a power system simulation.

2.2.1 Grid Related Models

Node

Representation of an electrical node, with no further distinction into bus bar, auxiliary node or others.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
vMag p.u.
vAng degree

Caveats

Nothing - at least not known. If you found something, please contact us!

Connector

Representation of all kinds of connectors.

30 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
iAMag ampere A stands for sending node
iAAng degree
iBMag ampere B stands for receiving node
iBAng degree

Caveats

Groups all available connectors i.e. lines, switches and transformers

Line

Representation of an AC line.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
iAMag ampere A stands for sending node
iAAng degree
iBMag ampere B stands for receiving node
iBAng degree

Caveats

Nothing - at least not known. If you found something, please contact us!

Switch

Representation of electrical switches.

2.2. Result 31

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
iAMag ampere A stands for sending node
iAAng degree
iBMag ampere B stands for receiving node
iBAng degree
closed boolean status of the switching device

Caveats

Nothing - at least not known. If you found something, please contact us!

Transformer

Representation of transformers.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
iAMag ampere A stands for sending node
iAAng degree
iBMag ampere B stands for receiving node
iBAng degree
tapPos –

Caveats

Groups common information to both 2W and 3W transformers.

Two Winding Transformer

Representation of two winding transformers.

32 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
iAMag ampere A stands for sending node
iAAng degree
iBMag ampere B stands for receiving node
iBAng degree
tapPos –

Caveats

Assumption: Node A is the node at higher voltage.

Three Winding Transformer

Representation of three winding transformers.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time ZonedDateTime date and time for the produced result
inputModel – uuid for the associated input model
iAMag ampere A stands for sending node
iAAng degree
iBMag ampere B stands for receiving node
iBAng degree
iCMag ampere B stands for receiving node
iCAng degree
tapPos –

Caveats

Assumption: Node A is the node at highest voltage and Node B is at intermediate voltage. For model specifications
please check corresponding input model documentation.

2.2.2 Participant Related Models

Biomass plant

Result of a biomass power plant.

2.2. Result 33

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

Caveats

Nothing - at least not known. If you found something, please contact us!

Combined Heat and Power Plant

Result of a combined heat and power plant.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr
qDot MW Thermal power

Caveats

Nothing - at least not known. If you found something, please contact us!

Electric Vehicle

Result of an electric vehicle, that is occasionally connected to the grid via an electric vehicle charging station.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr
soc –

34 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Caveats

Nothing - at least not known. If you found something, please contact us!

Electric Vehicle Charging Station

This model is currently only a dummy implementation of an electric vehicle charging station.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

Caveats

Nothing - at least not known. If you found something, please contact us!

Fixed Feed In Facility

Result of a facility, that provides constant power feed in, as no further information about the actual behaviour of the
model can be derived.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

Caveats

Nothing - at least not known. If you found something, please contact us!

Load

Result of a heat pump.

2.2. Result 35

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr
qDot MW Thermal power

Caveats

Nothing - at least not known. If you found something, please contact us!

Load

Result of (mainly) domestic loads.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

Caveats

Nothing - at least not known. If you found something, please contact us!

Photovoltaic Power Plant

Result of a photovoltaic power plant.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

36 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Caveats

Nothing - at least not known. If you found something, please contact us!

Electrical Energy Storage

Result of an electrochemical storage

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr
soc –

Caveats

Nothing - at least not known. If you found something, please contact us!

Wind Energy Converter

Result of a wind turbine.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

Caveats

Nothing - at least not known. If you found something, please contact us!

Thermal Sink

Result of a thermal sink.

2.2. Result 37

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
qDot MW thermal heat demand

Caveats

Nothing - at least not known. If you found something, please contact us!

Thermal Storage

Result of a thermal storage.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
energy MWh
qDot MW heat flowing in

Caveats

Nothing - at least not known. If you found something, please contact us!

Thermal Unit

Result of a thermal unit.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
qDot MW thermal power exchanged

Caveats

Nothing - at least not known. If you found something, please contact us!

38 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Thermal House

Model for the thermal behaviour of a building. This reflects a simple shoe box with transmission losses

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
qDot MW thermal heat demand of the sink
indoorTemperature °C

Caveats

Nothing - at least not known. If you found something, please contact us!

Cylindrical Thermal Storage

Result of a cylindrical thermal storage using a fluent to store thermal energy.

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
energy MWh
qDot MW heat demand of the sink
fillLevel –

Caveats

Nothing - at least not known. If you found something, please contact us!

System Participant

Groups together all system participants such as PV, Storage etc.

2.2. Result 39

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Attributes, Units and Remarks

Attribute Unit Remarks
uuid – uuid for the result entity
time – date and time for the produced result
inputModel – uuid for the associated input model
p MW
q MVAr

Caveats

Nothing - at least not known. If you found something, please contact us!

2.3 Time Series

Time series are meant to represent a timely ordered series of values. Those can either be electrical or non-electrical
depending on what one may need for power system simulations. Our time series models are divided into two subtypes:

Individual Time Series Each time instance in this time series has its own value (random duplicates may occur obvi-
ously). They are only applicable for the time frame that is defined by the content of the time series.

Repetitive Time Series Those time series do have repetitive values, e.g. each day or at any other period. Therefore,
they can be applied to any time frame, as the mapping from time instant to value is made by information
reduction. In addition to actual data, a mapping function has to be known.

To be as flexible, as possible, the actual content of the time series is given as children of the Value class. The
following different values are available:

Value Class Purpose
PValue Electrical active power
SValue Electrical active and reactive power
HeatAndPValue

Combination of thermal power (e.g. in kW)
and electrical active power (e.g. in kW)

HeatAndSValue

Combination of thermal power (e.g. in kW)
and electrical active and reactive power (e.g. in kW and
kVAr)

EnergyPriceValue Wholesale market price (e.g. in C / MWh)
SolarIrradianceValue Combination of diffuse and direct solar irradiance
TemperatureValue Temperature information
WindValue Combination of wind direction and wind velocity
WeatherValue Combination of irradiance, temperature and wind infor-

mation

40 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

2.4 Validation Utils

This page gives an overview about the ValidationUtils in the PowerSystemDataModel.

The methods in ValidationUtils and subclasses can be used to check that objects are valid, meaning their parameters
have valid values and they are correctly connected.

• The check methods include checks that assigned values are valid, e.g. lines are not allowed to have negative
lengths or the rated power factor of any unit must be between 0 and 1.

• Furthermore, several connections are checked, e.g. that lines only connect nodes of the same voltage level or that
the voltage levels indicated for the transformer sides match the voltage levels of the nodes they are connected
to.

• The method ValidationUtils.check(Object) is the only method that should be called by the user.

• This check method identifies the object class and forwards it to a specific check method for the given object

• The overall structure of the ValidationUtils methods follows a cascading scheme, orientated along the class tree

• Example: A LineInput lineInput should be checked

1. ValidationUtils.check(lineInput) is called

2. ValidationUtils.check(lineInput) identifies the class of the object as AssetInput
and calls ValidationUtils.checkAsset(lineInput)

3. ValidationUtils.checkAsset(lineInput), if applicable, checks those parameters that
all AssetInput have in common (e.g. operation time) and further identifies the ob-
ject, more specifically, as a ConnectorInput and calls ConnectorValidationUtils.
check(lineInput)

4. ConnectorValidationUtils.check(lineInput), if applicable, checks those parameters
that all ConnectorInput have in common and further identifies the object, more specifically, as a
LineInput and calls ConnectorValidationUtils.checkLine(lineInput)

5. ConnectorValidationUtils.checkLine(lineInput) checks all specific parameters of
a LineInput

• ValidationUtils furthermore contains several utils methods used in the subclasses

The ValidationUtils include validation checks for. . .

• NodeValidationUtils

– NodeInput

– VoltageLevel

• ConnectorValidationUtils:

– ConnectorInput

* LineInput

* Transformer2WInput

* Transformer3WInput

* SwitchInput

– ConnectorTypeInput

* LineTypeInput

* Transformer2WTypeInput

2.4. Validation Utils 41

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

* Transformer3WTypeInput

• MeasurementUnitValidationUtils

– MeasurementUnitInput

• SystemParticipantValidationUtils

– SystemParticipantInput

* BmInput

* ChpInput

* EvInput

* FixedFeedInInput

* HpInput

* LoadInput

* PvInput

* StorageInput

* WecInput

* (missing: EvcsInput)

– SystemParticipantTypeInput

* BmTypeInput

* ChpTypeInput

* EvTypeInput

* HpTypeInput

* StorageTypeInput

* WecTypeInput

* (missing: EvcsTypeInput/ChargingPointType)

• ThermalUnitValidationUtils

– ThermalUnitInput

* ThermalSinkInput

· ThermalHouseInput

* ThermalStorageInput

· CylindricalStorageInput

• GraphicValidationUtils

– GraphicInput

* LineGraphicInput

* NodeGraphicInput

• GridContainerValidationUtils

– GraphicElements

– GridContainer

42 Chapter 2. Available models

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

– RawGridElements

– SystemParticipants

• Due to many checks with if-conditions, the usage of the ValidationUtils for many objects might be runtime
relevant.

• The check for a GridContainer includes the interplay of the contained entities as well as the checks of all
contained entities.

• If new classes are introduced to the PowerSystemDataModel, make sure to follow the forwarding structure of
the ValidationUtils methods when writing the check methods!

2.4. Validation Utils 43

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

44 Chapter 2. Available models

CHAPTER 3

I/O

The PowerSystemDataModel library additionally offers I/O-capabilities. In the long run, it is our aim to provide many
different source and sink technologies. Therefore, the I/O-package is structured as highly modular.

3.1 InfluxDB

InfluxDB is a time series database. As such, it can only handle time based data like weather data or results. The
PowerSystemDataModel offers two interface implementations for InfluxDB 1.x: WeatherSource and OutputDataSink.

3.1.1 Introduction to InfluxDB

InfluxDB is a NoSQL database as it is neither relational nor able to handle SQL queries, even though InfluxDB’s
own QueryLanguage, InfluxQL is very similar to SQL. InfluxDB persists data in measurements. A measurement is
comparable to a table in a relational data model. It consists of a measurement name, fields, tags and a time column. The
measurement name is the equivalent of a table name. Fields and tags are similar as they both hold data like columns
in relational data. But while fields are supposed to hold the actual data, tags should only hold metadata, which is why
tag values can only be strings. Under default configuration, one tag key can only hold 10 000 distinct tag values. This
choice was made as tags are indexed and supposed to be queried. Fields should only be queried if not avoidable. The
time column is automatically provided, it holds timestamps in RFC3339 UTC, which for example looks like “2020-
06-22T10:14:50.52Z”. The equivalent to a table row is a measurement point. It holds field and tag values as well as
the time. While the data values are optional, a timestamp is not. If no time is provided when persisting, the current
system time is used.

3.1.2 Instantiating an InfluxDB DataConnector

To instantiate an InfluxDbConnector a connection url, a database name and a scenario name should be provided. The
scenario name is used to build measurement names for results. If none of those are provided, default values are used.

45

https://www.influxdata.com/products/influxdb-overview/
https://docs.influxdata.com/influxdb/v1.8/query_language/
https://www.ietf.org/rfc/rfc3339.txt

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

InfluxDbConnector unparameterizedInfluxDb = new InfluxDbConnector();
InfluxDbConnector defaultInfluxDb = new InfluxDbConnector(""http://localhost:8086/",
→˓"ie3_in", null);
unparameterizedInfluxDb.equals(defaultInfluxDb); //true

3.2 csv files

3.2.1 Naming of files

A naming strategy provides a mapping between model classes and the human readable names of those entities to be
used within e.g. the data sinks, in which the serialized representation of several objects of this class can be found.
Currently we offer two different, pre-defined naming strategies, which you might extend to fit your needs:

1. EntityPersistenceNamingStrategy: A basic naming strategy that is able to add prefix and suffix to the names
of the entities. A flat folder structure is considered. For more details see Default naming strategy.

2. HierarchicFileNamingStrategy: An extended version of the EntityPersistenceNamingStrategy. Additionally,
the Default directory hierarchy is taken into account. Please note, that this directory hierarchy is only meant to
be used in conjunction with input models.

However, you can control the behaviour of serialization and de-serialization of models by injecting the desired naming
strategy you like into CsvDataSource and CsvFileSink.

3.2.2 Default naming strategy

There is a default mapping from model class to naming of entities in the case you would like to use csv
files for (de-)serialization of models. You may extend / alter the naming with pre- or suffix by calling new
EntityPersistenceNamingStrategy("prefix","suffix").

46 Chapter 3. I/O

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Input

Model File Name
operator prefix_operator_input_suffix
node prefix_node_input_suffix
line

prefix_line_input_suffix
prefix_line_type_input_suffix

switch prefix_switch_input_suffix
two winding transformer

prefix_transformer2w_input_suffix
prefix_transformer2w_type_input_suffix

three winding transformer

prefix_transformer3w_input_suffix
prefix_transformer3w_type_input_suffix

measurement unit prefix_measurement_unit_input_suffix
biomass plant

prefix_bm_input_suffix
prefix_bm_type_input_suffix

combined heat and power plant

prefix_chp_input_suffix
prefix_chp_type_input_suffix

electric vehicle

prefix_ev_input_suffix
prefix_ev_type_input_suffix

electric vehicle charging station prefix_evcs_input_suffix
fixed feed in facility prefix_fixed_feed_in_input_suffix
heat pump

prefix_hp_input_suffix
prefix_hp_type_input_suffix

load prefix_load_input_suffix
photovoltaic power plant prefix_pc_input_suffix
electrical energy storage

prefix_storage_input_suffix
prefix_storage_type_input_suffix

wind energy converter

prefix_wec_input_suffix
prefix_wec_type_input_suffix

schematic node graphic prefix_node_graphic_input_suffix
schematic line graphic prefix_line_graphic_input_suffix3.2. csv files 47

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Time Series

Model File Name
individual time series prefix_its_columnScheme_UUID_suffix
load profile input prefix_rts_profileKey_UUID_suffix

Let’s spend a few more words on the individual time series: Those files are meant to carry different types of content
- one might give information about wholesale market prices, the other is a record of power values provided by a real
system. To be able to understand, what’s inside of the file, the columnScheme part of the file name gives insight of it’s
content. The following keys are supported until now:

Key Information and supported head line
c

An energy price (e.g. in C/MWh; c stands for charge).
Permissible head line: uuid,time,price

p

Active power
Permissible head line: uuid,time,p

pq

Active and reactive power
Permissible head line: uuid,time,p,q

h

Heat power demand
Permissible head line: uuid,time,h

ph

Active and heat power
Permissible head line: uuid,time,p,h

pqh

Active, reactive and heat power
Permissible head line: uuid,time,p,q,h

weather

Weather information
Permissible head line:

uuid,time,coordinate,
direct_irradiation,
diffuse_irradiation,temperature,
wind_velocity,wind_direction

As the uuid and time field are mandatory, they are not mentioned explicitly, here.

48 Chapter 3. I/O

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Results

Model File Name
node prefix_node_res_suffix
line prefix_line_res_suffix
switch prefix_switch_res_suffix
two winding transformer prefix_transformer2w_res_suffix
three winding transformer prefix_transformer3w_res_suffix
biomass plant prefix_bm_res_suffix
combined heat and power plant prefix_chp_res_suffix
electric vehicle prefix_ev_res_suffix
electric vehicle charging station prefix_evcs_res_suffix
fixed feed in prefix_fixed_feed_in_res_suffix
heat pump prefix_hp_res_suffix
load prefix_load_res_suffix
photovoltaic power plant prefix_pv_res_suffix
storage prefix_storage_res_suffix
wind energy converter prefix_wec_res_suffix
thermal house model prefix_thermal_house_res_suffix
cylindrical thermal storage prefix_cylindrical_storage_res_suffix

3.2.3 Default directory hierarchy

Although there is no fixed structure of files mandatory, there is something, we consider to be a good idea of structuring
things. You may either ship your csv files directly in this structure or compress everything in a .tar.gz file. However,
following this form, we are able to provide you some helpful tools in obtaining and saving your models a bit easier.

The italic parts are optional and the others are mandatory. As you see, this still is a pretty flexible approach, as you
only need to provide, what you really need. However, note that this hierarchy is only meant to be used in conjunction
with input models, yet.

The class DefaultInputHierarchy offers some helpful methods to validate and create a default input file hier-
archy.

3.2.4 De-Serialization (loading models)

Having an instance of Grid Container is most of the time the target whenever you load your grid. It consists of the
three main blocks:

1. Raw grid elements

2. System participants

3. Graphics

Those blocks are also reflected in the structure of data source interface definitions. There is one source for each of the
containers, respectively.

As a full data set has references among the models (e.g. a line model points to its’ nodes it connects), there is a
hierarchical structure, in which models have to be loaded. Therefore, the different sources have also references among
themselves. An application example to load an exampleGrid from csv files located in ./exampleGrid could look
like this:

3.2. csv files 49

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Fig. 1: Default directory hierarchy for input classes

Fig. 2: Default directory hierarchy for result classes

50 Chapter 3. I/O

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

Fig. 3: Class diagram of data sources

/* Parameterization */
String gridName = "exampleGrid";
String csvSep = ",";
String folderPath = "./exampleGrid";
EntityPersistenceNamingStrategy namingStrategy = new
→˓EntityPersistenceNamingStrategy(); // Default naming strategy

/* Instantiating sources */
TypeSource typeSource = new CsvTypeSource(csvSep, folderPath, namingStrategy);
RawGridSource rawGridSource = new CsvRawGridSource(csvSep, folderPath, namingStrategy,
→˓ typeSource);
ThermalSource thermalSource = new CsvThermalSource(csvSep, folderPath, namingStrategy,
→˓ typeSource);
SystemParticipantSource systemParticipantSource = new CsvSystemParticipantSource(

csvSep,
folderPath,
namingStrategy,
typeSource,
thermalSource,
rawGridSource

);
GraphicSource graphicsSource = new CsvGraphicSource(

csvSep,
folderPath,
namingStrategy,
typeSource,
rawGridSource

);

/* Loading models */
RawGridElements rawGridElements = rawGridSource.getGridData().orElseThrow(

() -> new SourceException("Error during reading of raw grid data."));
SystemParticipants systemParticipants = systemParticipantSource.
→˓getSystemParticipants().orElseThrow(

() -> new SourceException("Error during reading of system participant data.
→˓"));
GraphicElements graphicElements = graphicsSource.getGraphicElements().orElseThrow(

() -> new SourceException("Error during reading of graphic elements."));
JointGridContainer fullGrid = new JointGridContainer(

gridName,
rawGridElements,
systemParticipants,
graphicElements

);

As observable from the code, it doesn’t play a role, where the different parts come from. It is also a valid solution, to

3.2. csv files 51

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

receive types from file, but participants and raw grid elements from a data base. Only prerequisite is an implementation
of the different interfaces for the desired data source.

3.2.5 Serialization (writing models)

Serializing models is a bit easier:

/* Parameterization */
String csvSep = ",";
String folderPath = "./exampleGrid";
EntityPersistenceNamingStrategy namingStrategy = new
→˓EntityPersistenceNamingStrategy();
boolean initEmptyFiles = false;

/* Instantiating the sink */
CsvFileSink sink = new CsvFileSink(folderPath, namingStrategy, initEmptyFiles,
→˓csvSep);
sink.persistJointGridContainer(grid);

The sink takes a collection of model suitable for serialization and handles the rest (e.g. unboxing of nested models)
on its own. But caveat: As the (csv) writers are implemented in a concurrent, non-blocking way, duplicates of nested
models could occur.

3.2.6 Compression and extraction of files

We consider either regular directories or compressed tarball archives (*.tar.gz) as source of input files. The class
TarballUtils offers some helpful functions to compress or extract input data files for easier shipping.

52 Chapter 3. I/O

https://en.wikipedia.org/wiki/Tar_(computing)

CHAPTER 4

Contact the (Main) Maintainers

If you feel, something this missing, wrong or misleading, please contact one of our main contributors:

• @sensarmad

• @johanneshiry

• @ckittl

Hat tip to all other contributors!

53

https://github.com/sensarmad
https://github.com/johanneshiry
https://github.com/ckittl

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

54 Chapter 4. Contact the (Main) Maintainers

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

55

PowerSystemDataModel, Release 1.0.1-SNAPSHOT

56 Chapter 5. Indices and tables

Bibliography

[Gremmel1999] Gremmel, H., Ed., Schaltanlagen. Cornelsen Verlag, 1999, Vol. 10, isbn: 3-464-48235-9.

57

	Getting started
	Requirements
	Where to get

	Available models
	Input
	Result
	Time Series
	Validation Utils

	I/O
	InfluxDB
	csv files

	Contact the (Main) Maintainers
	Indices and tables
	Bibliography

